
Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.035 Spring 2013

Test II Solutions

Mean 80 Median 83 Std. dev 16

 0

 2

 4

 6

 8

 10

0 10 20 30 40 50 60 70 80 90 100

1

I Generating Assembly for References

In this question, you’ll generate code to implement C++’s pass-by-reference features in Decaf. In
C++, if a function declaration contains a parameter with a declaration int &x, then x is passed
by reference meaning that 1) the function receives the address of x and 2) an assignment to x, such
as x = 1, automatically dereferences the address for x and stores 1 in that location.

1. [16 points]: Generate x64 assembly code for swap.

void foo()

{

int a[2];

a[0] = 0;

a[1] = 1;

swap(a[0], a[1]);

}

void swap(int &r1, int &r2)

{

int t = r1;

r1 = r2;

r2 = t;

}

Write your assembly in AT&T syntax (src then dest). You should only use the instructions
described in the table below. Remember that the first argument is passed in register rdi and
the second in rsi. Finally, remember the simple x86 64 addressing modes: %rax references
register rax, (%rax) references memory at the address in rax, and 100(%rax) references
memory at 100 bytes + the address in rax. Only one dereference (e.g. (%rax)) is allowed
per instruction.

x86 64 instructions to use

enter $n, $0 Adjust stack for n bytes of local storage
mov a, b Move value of a into destination b
add a, b Add value of a to value in b; store in b
call sym Call function sym

leave Undo effects of enter
ret Return from function call

foo:

enter $16, $0

mov $0, -8(%rbp)

mov $1, -16(%rbp)

mov $-8 %rdi

add %rbp %rdi

mov $-16 %rsi

add %rbp %rsi

call swap

leave

ret

Solution:

swap:

enter $0, $0

mov %(rdi) %r10

mov %(rsi) %r11

mov %r11 %(rdi)

mov %r10 %(rsi)

leave

ret

2

II What Makes a Lattice a Lattice?

2. [2 points]: Given a partial order ≤ over a set P , for an element a ∈ P to be an upper
bound of a set Q ⊆ P , what must be true of a?

Solution: ∀x ∈ Q . x ≤ a

3. [3 points]: Given a partial order ≤ over a set P , for an element a ∈ P to be a least
upper bound of a set Q ⊆ P , what must be true of a?

Solution: Let X be the set of upper bounds of Q. Then a ∈ X and ∀x ∈ X . a ≤ x

4. [3 points]: True/False. All infinite lattices are incomplete. If true, give a proof. If
false, give a counterexample – i.e., provide an infinite lattice that is complete.

Solution: False. We can take Z∪{∞,−∞} as the set of elements and use less-than-or-equal
as the partial order.

3

5. [12 points]: Each of the following Hasse diagrams describe a different partial order
≤i for the set P = {a, b, c, d, e, f, g}. For each diagram, describe why (P,≤i) is or is not a
lattice.

A.

a

b c

d e f

g

Solution: This is a lattice. There is both a least upper bound and a greatest lower
bound for each pair of elements in P .

B.

a

b c

d e f

g

Solution: This is not a lattice. For this to be a lattice there must be a greatest lower
bound for each pair of elements in P . However, there is no greatest lower bound for d
and g.

4

III Liveness Analysis

In this problem, you will perform liveness analysis on the following piece of code using a bit-vector
formalization where the order of the variables in the vector is xyz:

x = a + b

y = x + 1

z = x

if (x > 0) {

z = x + 1

} else {

x = 2

}

y = z + x

6. [5 points]: Draw the control flow graph for this program. Label each basic block
with a number n.

Solution:

Man, sometimes LATEX just isn’t worth it. -Cam

5

7. [8 points]: Compute GEN[n] and KILL[n] for each basic block n.

Solution:

GEN[1] = 000 KILL[1] = 111
GEN[2] = 100 KILL[2] = 000
GEN[3] = 100 KILL[3] = 001
GEN[4] = 000 KILL[4] = 100
GEN[5] = 101 KILL[5] = 010

8. [8 points]: Compute the least solution of the data flow equations, e.g. IN[n] = ...
and OUT[n] = ... for each basic block. Assume that all variables are live after the end of the
last basic block.

Solution:

IN[1] = 000 OUT[1] = 101
IN[2] = 101 OUT[2] = 101
IN[3] = 100 OUT[3] = 101
IN[4] = 001 OUT[4] = 101
IN[5] = 101 OUT[5] = 111

9. [6 points]: Do the results of liveness analysis on this code enable any optimization
opportunities? If so, describe the optimization. If not, describe an optimization that uses
liveness analysis and explain why it’s not applicable.

Solution: Yes; y is not live at any point before its redefinition in block 5, and therefore its
prior definition can be removed (freeing any register allocated to it).

6

IV Home on The Range

Ben Bittdiddle heard that instructions like movb (move a single byte) can be faster than instructions
like movq (move an entire quadword). Because of this, he’d like to build an analysis that computes
the range of values that an unsigned 64-bit integer variable may have so that his compiler knows
when it’s safe to use these other instructions on that variable. As so often happens on tests at
MIT, for some reason, you have to help him with this.

Ben knows that to analyze the range of a variable in the program, he needs to define a lattice that
defines the data-flow facts that the analysis will track for the variable.

Ben chooses to define the base elements of his lattice to be from the set P = { [l, u] | l ≤ u and 0 ≤
l and u ≤ 264}. This is the set of all ranges [l, u] of bounded 64-bit unsigned integers, where l is
the lower end of the range (inclusive) and u is the upper end (inclusive).

Ben then chooses the following partial order for two ranges [l1, u1] ∈ P and [l2, u2] ∈ P :

[l1, u1] ≤ [l2, u2] if and only if l2 ≤ l1 and u1 ≤ u2.

10. [2 points]: Describe the relationship between [l1, u1] and [l2, u2] when [l1, u1] ≤
[l2, u2]. Define their relationship in terms of their overlap/intersection, containment, or order.

Solution: [l1, u1] ≤ [l2, u2] implies that [l1, u1] is contained within [l2, u2].

11. [8 points]: Define the join operator, [l1, u1] ∨ [l2, u2], that is consistent with Ben’s
partial order.

Solution: [l1, u1] ∨ [l2, u2] = [min(l1, l2),max(u1, u2)]

12. [10 points]: Under Ben’s partial order, is P a lattice? Why or why not? If not,
explain how you would extend P to be a lattice.

Solution: P is not a lattice under Ben’s partial order because there isn’t a greatest lower
bound for each pair of elements in P . For example, there isn’t a greatest lower bound for
the elements [0, 0] and [1, 1]. We can however extend P with a bottom element ⊥, such that
∀p ∈ P .⊥ ≤ p.

7

13. [7 points]: When Ben’s compiler runs the analysis on a program, it will maintain a
single lattice element for each of the program’s variables. Assume that at the program point
before a statement a = b + c, the lattice element for b is [lb, ub] and the lattice element for
c is [lc, uc]. What value will the transfer function compute for the lattice element [la, ua] for
a at the program point after the statement? Assume that ub and uc are less than 215.

Solution: plus(a, b) = {(al + bl), (au + bu)}

14. [5 points]: Assuming that all the transfer functions in Ben’s analysis are monotonic,
does his analysis terminate? Why or why not?

Solution: Yes, the lattice is finite and therefore has the ascending chain property.

8

15. [5 points]: Ben implemented the data-flow framework you helped him with but is
running into problems. In certain cases, it seems to take an inordinately long time, even for
small code segments. So, he printed the control flow graph for one of the offending segments:

i = 0

i < 100000

printf("loop")printf("done")

i++

Why is this code slowing down the analysis framework? How can you fix this problem?

Solution: A vanilla implementation of this analysis framework (one that does not take into
account conditionals) will naively increment i’s interval on each iteration of the loop. The
interval for i on the loop’s backedge will therefore take the sequence of ascending values
[0, 0], [0, 1], [0, 2]....[0, 264], at which point the algorithm finally terminates. We can instead
modify this analysis by using a widening operator to replace the interval with the top element
([0, 264]) directly after we observe an excessive number of ascending values.

9

