Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.035 Spring 2013

Test I Solutions

Mean 83 Median 87 Std. dev 13.8203

14

12

10

I DFAs, NFAs, Regular Expressions and Context Free Grammars

For Questions 1 and 2, if a regular expression or context-free grammar can describe the language
then provide one. Otherwise, write “N/A.”

1. [4 points]: The language of matched parentheses.
Solution: CFG:

S —e (1)
S — (S)S (2)

The grammar with S — (S) was also accepted since the question wasn’t specific.

2. [4 points]: The language of even length strings over the alphabet {0,1}. Solution:
Regular Expression: ((01)[(10))*

3. [4 points]: True or false: NFAs are more powerful (can recognize more languages)
than DFAs. If false, explain. If true, give an example of a language that an NFA can parse
that a DFA cannot.

Solution: False. Any NFA can be transformed into a DFA, although the DFA make take
exponentially more space.

4. [8 points|: Give a regular expression for the following NFA:

0,1

start —>
0

Solution: (0]1)*00*11((0]1)0*11)*1 (Other valid regexes accepted)

II Hacking the Grammar

For Questions 5 through 7, consider the following grammar for a language with expressions:

EFE—-F+F

FE—-FExE

FE —c

Where ¢ is a number token.

5. [11 points]: Hack the grammar to give + higher precedence than x, to make + left
associative, and to make x right associative. The grammar should produce a parse tree for
the string “14+243 x4 x5 x 6” that reflects the evaluation order (((142)+3) x (4 x (5% 6))).
This evaluation order is also reflected in the following abstract syntax tree:

+/X\><
VANVAN
VANIRRVAN

Solution:

6. [11 points]: Remove left recursion from your answer to Question 5 to make the

language parseable by a recursive descent parser with one token of lookahead. Do not worry
about maintaining associativity.

Solution:
F —-FxFE
|F
F —c+ F
lc
7. [6 points]: Removing left recursion from your grammar leads to weird parse trees.

Draw the parse tree (not AST) your grammar from Question 6 would produce for the string

1+24+3x4x5x6.

Solution:
X E

SN,

E

N

X E

/1N /1N

1 c + F c F x E
2 c 4 C F

3 5 c

6

8. [6 points]: Eliminating Shift-Reduce Conflicts:
Consider the language defined by the following grammar (where S is the only nonterminal):

S—ifab
S — if abelsec

If you give this grammar to a parser generator that produces a shift-reduce parser with no
lookahead, then the parser generator will say that there is a shift-reduce conflict. Rewrite the
grammar to eliminate the conflict.

Solution:

Oops. Not possible. Points for everyone.

III Implementing Object-Orientation: Descriptors and Symbol
Tables

Use the diagram on the next page to answer the following three questions about this fragment of
an expression interpreter.

class Environment { ... }

abstract class Expression {
abstract int eval (Environment env);

b
abstract class BinaryExpression extends Expression
{
Expression opl, op2;
}
class Plus extends BinaryExpression
{
int eval(Environment env) { return opl.eval(env) + op2.eval(env); }
3

9. [5 points]: Complete the entries of the class descriptors for each class. Use an arrow
to connect the entry to a descriptor or symbol table where appropriate.

10. [5 points]: Complete the entries of the field symbol tables for each class. Use an
arrow to connect the entry to a descriptor or symbol table where appropriate.

11. [5 points]: Complete the entries of the method symbol tables for each class. Use an
arrow to connect the entry to a descriptor or symbol table where appropriate.

12. [5 points|: How does the method descriptor for a method with an abstract modifier
differ from that of a method without the modifier?

Class Descriptors

Expression BinaryExpression Plus
parent parent
O fields 0 fields —O fields
methods O methods O methods (P
Field Symbol Tables
Expression BinaryExpression Plus
(,/j) parent parent
opl
opl
Method Symbol Tables
Expression BinaryExpression Plus
__—O parent _—0 parent
<
eval eval

IV Semantic Analysis

For this problem, you will write a semantic analyzer for the following simple language:

P — DeclsE

Decls — D, Decls| e
D — ID=read int | ID=read float | ID = read_string
E — INT| FLOAT| STRING | ID | concat(E,E) | E+ E

The language consists of a sequence of variable declarations and a single expression consisting of
constants (integer, float, and string), variable references, string concatenation, and addition. The
keywords read_int, read_float, and read_string read a value of the given type from the user.

Implement a semantic analyzer in pseudo-code for the program element specified in each question.
Your implementation should compute the type attribute of the given production. For example, the
implementations for P and Decls are as follows:

P — Decls E
{ P.type = (Decls.type == "void") 7 E.type : Decls.type; }

Decls — D , Decls;
{ Decls.type = (D.type == "void") 7 Declsl.type : D.type; }

Decls — €
{ Decls.type = "void"; }

e Use the types “int”, “float”, “str”, and “void”.
e Use the type “err” when the program has a semantic error. Do not throw an exception.

e Use a global symbol table that you can manipulate and access with the functions
void add(string name, string type) and string lookup(string name). lookup re-
turns null if the symbol hasn’t been defined.

13. [6 points]: Variable Declaration.
Goal: set D.type appropriately.

Semantic Rules:

— Each variable is declared at most once.
— The type of a variable is the type of the value assigned to it from the input.

— Semantically correct declarations have type “void”.

Assume: ID.value contains the name of the variable.

D — ID =read_int

{
string t = lookup(ID.value);
if (t == null) {
add(ID.value, "int");
D.type = "void";
} else {
D.Type = "err";
}
+

14. [2 points]: Constant Expression.
Goal: set E.type appropriately.

Semantic Rule: a constant has its given type (e.g., an integer has type “int”).

E — STRING
{

E.type = "str";
b

15. [4 points|: Variable Reference Expression.
Goal: set E.type appropriately.

Semantic Rules:

— A referenced variable must be declared.

— The type of a variable reference is the declared type of the variable.

Assume: ID.value contains the name of the variable.

E — ID

10

string t = lookup(ID.value);
E.type = (t != null) t : "err";
3

16.

[6 points]: String Concatenation Expression.

Goal: set E.type appropriately.

Semantic Rule: string concatentation operates only on string operands.

Assume:

E — concat(E1, Es)

{
if (El.type == "str" && E2.type == "str") {
E.type = "str";
} else {
E.type = "err";
}
}
17. [8 points]: Addition Expression.

Goal: set E.type appropriately.

Semantic Rules:

— Addition operates only on integer and float operands.

— If one operand is a float, then the result of the addition is a float.

El.type and E2.type have already been recursively computed by the analyzer.

Assume: E1l.type and E2.type have already been recursively computed by the analyzer.
E — E1+ Ey
{

if (El.type == "err" || E2.type == "err"

{

}

}

}

}

3

E.type = "err";
else if (El.type
E.type = "err";
else if (El.type
E.type = "float";
else {

E.type = "int";

"str" || E2.type == "str") {

"float" || E2.type == "float") {

12

