0043

Memory Optimization



Outline

e [ssues with the Memory System
e | oop Transformations

e Data Transformations

e Prefetching

o Alias Analysis




Memory Hierarchy

1-2ns

3-10ns

8 - 30 ns

60 - 250 ns

5-20ms

Registers

L1 Private Cache

L2/L3
Shared Cache

Main Memory
(DRAM)

Permanent Storage
(Hard Disk)

32—-512B

16 — 128 KB

1-16 MB

1 GB—-128 GB

250 GB-4 TB




60%I/year
yr)

MProc
(2x/

Q.
S
O
O
=
v
>3
o
O
0
7
)
O
O
=
a B

o
o

9ouUewW.0LI9d




Cache Architecture

Pentium D

Core Duo

Core 2 Duo [} Athlon 64

L1 code
(per core)

Size

12 K uops

32 KB

32 KB

64 KB

associativity

8 way

8 way

8 way

2 way

Line size

64 bytes

64 bytes

64 bytes

64 bytes

L1 data
(per core)

Size

16 KB

32 KB

32 KB

64 KB

associativity

8 way

8 way

8 way

8 way

Line size

64 bytes

64 bytes

64 bytes

64 bytes

L1 to L2

Latency

4 cycles

3 cycles

3 cycles

3 cycles

L2 shared

Size

4 MB

4 MB

4 MB

1 MB

associativity

8 way

8 way

16 way

16 way

Line size

64 bytes

64 bytes

64 bytes

64 bytes

L2 to L3(off)

Latency

31 cycles

14 cycles

14 cycles

20 cycles




Cache Misses

Cold misses
— First time a data is accessed
Capacity misses

— Data got evicted between accesses because a lot of other data
(more than the cache size) was accessed

Conflict misses

— Data got evicted because a subsequent access fell on the same
cache line (due to associativity)

True sharing misses (multicores)
— Another processor accessed the data between the accesses
False sharing misses (multicores)

— Another processor accessed different data in the same cache line
between the accesses




Data Reuse

e Temporal Reuse

— A given reference accesses the
same location in multiple
iterations

e Spatial Reuse

— Accesses to different locations
within the same cache line

e Group Reuse

— Multiple references access the
same location

fori=0toN
forj=0to N
Alj] =

fori=0toN
fory=0to N

B[i, j] =

fori=0to N
Al[i] = A[i-1] + 1




Outline

e [ssues with the Memory System
e Loop Transformations

e Data Transformations

e Prefetching

o Alias Analysis




Matrix Multiply

fori=1ton
forj=1ton
fork =1ton
cli,j] += ali,k]*blk,j]




Example: Matrix Multiply

1024 1
x I:

1024 1024

Data Accessed




Matrix Multiply

fori0=1tonstepb
forj0=1tonstepb
forkO=1tonstepb
for 1 =i0 to min(i0+b-1, n)
for j = jO to min(jO+b-1, n)
for k = kO to min(kO+b-1, n)
cli,j] += ali,k]*b[k,]]




Example: Matrix Multiply

1024 1
XI:

1024 1024

Data Accessed

1024

=




Loop Transformations

e Transform the iteration space to reduce the
number of misses

e Reuse distance — For a given access, number of
other data items accessed before that data is
accessed again

e Reuse distance > cache size
— Data is spilled between accesses




Divide and Conquer Matrix
Multiply




Loop Transformations

fori=0toN
forj=0toN
fork=0to N
Alk,]]

Reuse distance = N2

If Cache size < 16 doubles?
A lot of capacity misses




Loop Transformations

fori=0toN
forj=0toN
fork=0to N
Alk,]]

Loop Interchange

forj=0to N
fori=0toN
fork=0to N
Alk,]]




Loop Transformations

forj=0to N
fori=0toN
fork=0toN
Alk,]]

Cache line size > data size
Cache line size = L
Reuse distance = LN

=

If cache size < 8 doubles?
Again a lot of capacity misses




Loop Transformations

forj=0to N
fori=0toN
fork=0toN
Alk,]]

Loop Interchange

fork=0to N
fori=0toN
forj=0to N
ALk,j]




Loop Transformations

fori=0toN
forj=0toN
fork=0to N
Ali,i]= Ali,j]1+ B[i k]+ C[k,j]

« No matter what loop transformation you do one array
access has to traverse the full array multiple times




Loop Tiling

fori=0toN
forj=0to N

for ii = 0 to ceil(N/b)
for jj = 0 to ceil(N/b)
for i = b*ii to min(b*ii+b-1, N)
for j = b*jj to min(b*jj+b-1, N)




Outline

e [ssues with the Memory System
e | oop Transformations

 Data Transformations

e Prefetching

o Alias Analysis




False Sharing Misses

for ] =
forall I =
X(1,J) = ..

—

| Cache Lines




Conflict Misses

for ] =
forall I =




Data Transformations

e Similar to loop transformations

o All the accesses have to be updated
— Whole program analysis is required




Strip-Mining

Create two dims from one

With blocksize=4

—

—
v .©

d
5 ©
I-l-
o K
=)
v o
(o]

Array
Access

Memory
Layout




Strip-Minding Permutation
Create two dims from one | Change memory layout

With blocksize=4 With permutation matrix [(1) (1)]

—

—
v .©

d
5 ©
I-l-
o K
=)
v o
(o]

Array
Access

Memory
Layout




Data Transformation Algorithm

Rearrange data: Each processor’s data is contiguous

Use data decomposition

— *, block, cyclic, block-cyclic

Transform each dimension according to the decomposition
Use a combination of strip-mining and permutation primitives




)
=
U
L=
0
%)
U
L=
0
e’

Example I

e
LA T




)
=
U
L=
0
%)
U
L=
0
e’

Example I

, ,~
(7
lhlhihl.m!hllhl&!

e F A
bl




)
=
U
L=
0
%)
U
L=
0
e’

Example I
-Mine

Strip

, ,~
(7
lhlhihl.m!hllhlhl

e F A
bl




Example I: (Cyclic, *)




Example I: (Cyclic, *)




*)

Tof

O
>

O

N

Example I

-Mine

Strip




© LU Decomposition
. (256%256)

LU Decomposition
(1Kx1K)

124468 10 12 16 18 20 22 24 26 28 30 32

5 point stencil
(512x512)

Parallelizing outer loop

Best computation placement

+ data transformations




Optimizations

e Modulo and division operations in the index calculation
— Very high overhead

o Use standard techniques
— Loop invariant removal, CSE
— Strength reduction exploiting properties of modulo and division
— Use knowledge about the program




Outline

e [ssues with the Memory System
e | oop Transformations

e Data Transformations

e Prefetching

o Alias Analysis




Prefetching

Cache miss stalls the processor for hundreds of cycles
— Start fetching the data early so it'll be available when needed

Pros
— Reduction of cache misses = increased performance

Cons
Prefetch contents for fetch bandwidth

e Solution: Hardware only issue prefetches on unused bandwidth

Evicts a data item that may be used
e Solution: Don't prefetch too early

Pretech is still pending when the memory is accessed
e Solution: Don't prefetch too late

Prefetch data is never used
e Solution: Prefetch only data guaranteed to be used

Too many prefetch instructions
e Prefetch only if access is going to miss in the cache




Prefetching

e Compiler inserted
— Use reuse analysis to identify misses
— Partition the program and insert prefetches

e Run ahead thread (helper threads)

— Create a separate thread that runs ahead of the main
thread

— Runahead only does computation needed for control-
flow and address calculations

— Runahead performs data (pre)fetches




Outline

e [ssues with the Memory System
e | oop Transformations

e Data Transformations

e Prefetching

o Alias Analysis




Alias Analysis

e Aliases destroy local reasoning

— Simple, local transformations require global reasoning in the
presence of aliases

— A critical issue in pointer-heavy code
— This problem is even worse for multithreaded programs

e Two solutions

— Alias analysis
e Tools to tell us the potential aliases

— Change the programming language
e Languages have no facilities for talking about aliases
e Want to make local reasoning possible

From Prof. Aiken (@ Stanford CS 294-1 Lecture 15




Aliases

e Definition

Two pointers that point to the same location
are aliases

e Example
VA
X=Y
*X =3 /* changes the value of *Y */




Example

foo(int * A, int * B, int * C, int N)
fori =0 to N-1
A[i]= A[i]+ B[i] + C[i]

e Is this loop parallel?

e Depends

int X[1000]; int X[1000];

int Y[1000]; foo(&X[1], &X[0], &X[2], 998);
int Z[1000]

foo(X, Y, Z, 1000);




Points-To Analysis

e Consider:
P=&Q
Y =&Z
X=Y
*X = P
e Informally:
— P can point to Q
— Y can point to Z

— X can point to Z
— Z can point to Q Q

From Prof. Aiken (@ Stanford CS 294-1 Lecture 15




Points-To Relations

e A graph
— Nodes are program names
— Edge (x,y) says x may point to y

e Finite set of nhames
— Implies each name represents many heap cells

— Correctness: If *x = y in any state of any execution,
then (x,y) is an edge in the points-to graph

From Prof. Aiken (@ Stanford CS 294-1 Lecture 15




Sensitivity

e Context sensitivity
— Separate different uses of functions

— Different is the key — if the analysis think the input is
the same, reuse the old results

o Flow sensitivity

e For insensitivity makes any permutation of program
statements gives same result

e Flow sensitive is similar to data-flow analysis




Conclusion

Memory systems are designed to give a huge
performance boost for “normal” operations

The performance gap between good and bad
memory usage is huge

Programs analyses and transformations are
needed

Can off-load this task to the compiler




