0043

Parallelization

Outline

e Why Parallelism

e Parallel Execution

e Parallelizing Compilers

e Dependence Analysis

e Increasing Parallelization Opportunities

Moore’s Law

1
Itanium 2 ,000,000,000

slojsisueld] JO JaquinN

7
e 1
21 8498019821984 1986 1988 1990 1992 1994 1996 1998 2000 20022004 2006 2008 201020122014 2016 0,000

Uniprocessor Performance (SPECint)

100000 -

o
©
N
b
bt
2
>
n
o
®
o
c
©
E
o
't
[}
o

25%lyear
-

1

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

Multicores Are Here!

Picochip Ambric
PC102 A AM2045

Cisco
A
CSR-1
Intel
Tflops
A

Raza Cavium
XLR Octeon

Niagara A Acell

Boardcom 1480 Opteron 4P

Xbox360 A

PA-8800 Qpteron Tanglewood
POWEI4 Ao AN

PExtreme Power6
Yonah

AA& AA

1970 1975 1980 1985 1990 1995 2000 2005 20?7?

Issues with Parallelism

e Amdhal’s Law
— Any computation can be analyzed in terms of a portion that
must be executed sequentially, Ts, and a portion that can be
executed in parallel, Tp. Then for n processors:
— T(n) = Ts + Tp/n
— T() = Ts, thus maximum speedup (Ts + Tp) /Ts

e Load Balancing

— The work is distributed among processors so that all processors
are kept busy when parallel task is executed.

e Granularity

— The size of the parallel regions between synchronizations or
the ratio of computation (useful work) to communication
(overhead).

Outline

e Parallel Execution

e Parallelizing Compilers

e Dependence Analysis

e Increasing Parallelization Opportunities

Types of Parallelism

Instruction Level
Parallelism (ILP)

Task Level Parallelism
(TLP)

- Scheduling and Hardware

- Mainly by hand

Loop Level Parallelism
(LLP) or Data Parallelism

- Hand or Compiler Generated

Pipeline Parallelism

Divide and Conquer
Parallelism

- Hardware or Streaming

- Recursive functions

Why Loops?

e 90% of the execution time in 10% of the code
— Mostly in loops

e If parallel, can get good performance
— Load balancing

e Relatively easy to analyze

Programmer Defined Parallel Loop

e FORALL e FORACROSS

— No “loop carried — Some “loop carried
dependences” dependences”

— Fully parallel

Parallel Execution

e Example

FORPAR I = 0 to N
A[I] = A[I] + 1

e Block Distribution: Program gets mapped into

Iters = ceiling (N/NUMPROC) ;
FOR P = 0 to NUMPROC-1
FOR I = P*Iters to MIN((P+1l)*Iters, N)
A[I] = A[I] + 1

e SPMD (Single Program, Multiple Data) Code

If (myPid == 0) {

Iters = ceiling (N/NUMPROC) ;

}

Barrier () ;

FOR I = myPid*Iters to MIN((myPid+1l) *Iters, N)
A[I] = A[I] + 1

Barrier () ;

Parallel Execution

e Example

FORPAR I = 0 to N
A[I] = A[I] + 1

e Block Distribution: Program gets mapped into

Iters = ceiling (N/NUMPROC) ;
FOR P = 0 to NUMPROC-1
FOR I = P*Iters to MIN((P+1l)*Iters, N)

A[I] = A[I] + 1

e Code fork a function
Iters = ceiling (N/NUMPROC) ;
FOR P = 0 to NUMPROC - 1 { ParallelExecute(funcl, P); }

BARRIER (NUMPROC) ;
void funcl (integer myPid)

{
FOR I = myPid*Iters to MIN((myPid+1l) *Iters, N)

A[I] = A[I] + 1

Parallel Execution

e SPMD

— Need to get all the processors to execute the
control flow

e Extra synchronization overhead or redundant
computation on all processors or both

— Stack: Private or Shared?

e Fork

— Local variables not visible within the function

e Either make the variables used/defined in the loop
body global or pass and return them as arguments

e Function call overhead

Parallel Thread Basics

e Create separate threads

— Create an OS thread

e (hopefully) it will be run on a separate core
— pthread_create(&thr, NULL, &entry_point, NULL)

— QOverhead in thread creation

e Create a separate stack
e Get the OS to allocate a thread

e Thread pool
— Create all the threads (= num cores) at the beginning
— Keep N-1 idling on a barrier, while sequential execution

— Get them to run parallel code by each executing a
function

— Back to the barrier when parallel region is done

Outline

e Parallelizing Compilers
e Dependence Analysis

e Increasing Parallelization Opportunities

Parallelizing Compilers

e Finding FORALL Loops out of FOR loops

e Examples

FOR I = 0 to 5
A[I] = A[I] + 1

FOR I = 0 to 5
A[I] = A[I+6] + 1

For I =0 to 5
A[2*I] = A[2*I + 1] + 1

Iteration Space

e N deep loops > N-dimensional discrete iteration space
— Normalized loops: assume step size = 1

012 34567 <]
FOR I = 0 to 6

FOR J = I to 7

6 O
e Iterations are represented as coordinates in iteration space

- |_= [ill iz, i3,..., |n]

Iteration Space

e N deep loops > N-dimensional discrete iteration space
— Normalized loops: assume step size = 1

012 34567 <]
FOR I = 0 to 6

FOR Jd = I to 7 O—O0—0—0—0—0©

O O e e
& & 4 & &

FY 6 6
& 4 & &

O Ve
\ 4 \ 4

O O
& &

6 O
e Iterations are represented as coordinates in iteration space
e Sequential execution order of iterations =» Lexicographic order
[0,0], [0.1], [O,2], ..., [0,6], [O,7],

[111]1 [112]1 B 4 [116]1 [117]1
[2,2], ..., [2,6], [2,7],

[6,6], [6,7],

Iteration Space

e N deep loops > N-dimensional discrete iteration space
— Normalized loops: assume step size = 1

0 12 34567 <]

FOR I = 0 to 6
FOR Jd =1I to 7 —O—O0—0O0—0O0—0

y
&

a
&

y-
\ 4

6 O
e Iterations are represented as coordinates in iteration space
o Sequential execution order of iterations = Lexicographic order

o Iterationi is IeX|cograp|caIIy less than] i<y iff
there exists c s.t. iy = Jy, iy = Jprer Iy = Jep @Nd . < J¢

Iteration Space

e N deep loops > N-dimensional discrete iteration space

— Normalized loops: assume step size = 1
0 12 34567 <]

FOR I = 0 to 6
FOR J = I to 7

e An affine loop nest
— Loop bounds are integer linear functions of constants, loop constant

variables and outer loop indexes
— Array accesses are integer linear functions of constants, loop constant

variables and loop indexes

Iteration Space

e N deep loops > N-dimensional discrete iteration space
— Normalized loops: assume step size = 1

N0 12 34567

FOR I = 0 to 6
FOR J = I to 7

o Affine loop nest - Iteration space as a set of linear inequalities
0<I
I<6
I<]
J<7

Data Space

e M dimensional arrays - M-dimensional discrete cartesian space
— a hypercube

Integer A(10)

Float B(5, 6)

Dependences

True dependence
a =
= a

Anti dependence
a
a

Output dependence
a =
a

Definition:

Data dependence exists for a dynamic instance i and j iff
— either i or j is a write operation
— iand j refer to the same variable
— i executes before j

How about array accesses within loops?

Outline

e Dependence Analysis

e Increasing Parallelization Opportunities

Array Accesses in a loop

FORI =0 to 5
A[I] = A[I] + 1

Data Space
345 / 8 9101112
{1 {1 i, i {1 — —

Il
|5}

= A[1]
A[I]

= A[1]
A[I]

= A[1]
A[I]

= A[1]
A[I]

= A[1]
A[I]

= A[I]
ALI]

Array Accesses in a loop
QQQQQQ

Iteration Space
1

2

4 5
O—0

|

!

FOR I =0 to 5
A[I] = A[I] + 1

Data Space
012 345 67 8 9101112

Array Accesses in a loop

FOR I = 0 to 5
A[I+1] = A[I] + 1

Iteration Space Data Space
0 12 3 45 012 345 67 8 9101112
o—@ Q@

O
A 4

!
|

A[l]

A[l]

A[T]

A[l]

AlT]

all

= A[I+2]

= A[I+2]

= A[I+2]

= A[I+2]

= A[I+2]

= A[I+2]

Array Accesses in a loop

duuuub

Iteration Space
1

2

4 5
O—0

|

!

FOR I
A[I]

O to 5
A[I+2] + 1

Array Accesses in a loop

= A[2*+1]
A[2*I]

= A[2*1+1]
A[2*I]

= A[2*1+1]
A[2*I]

= A[2*1+1]
A[2*I]

= A[2*1+1]
A[2*I]

= A[2*+1]
A[2*I]

Iteration Space
1

2

4 5
O—0

|

!

FOR I =
A[2*I]

O to 5
A[2*I+1] + 1

Distance Vectors

e A loop has a distance d if there exist a data
dependence from iteration | to j and

FOR I = 0 to 5
QQQQQQ

A[I] = A[I] + 1

FOR I =0 to 5
A[I+1] = A[I] + 1

FOR I =0 to 5
A[I] = A[I+2] + 1

FOR I = 0 to 5
A[I] = A[0] + 1

Multi-Dimensional Dependence

—

FOR I =1 to n
FOR J =1 to n l
A[I, J] = A[I, J-1] + 1 M

0
1

dv =

Multi-Dimensional Dependence

FOR I =1 to n
FOR J =1 to n
A[I, J] = A[I, J-1] + 1

0
1

dv =

FOR I =1 to n
FOR J =1 to n
A[I, J] = A[I+1, J] + 1

Outline

e Dependence Analysis
e Increasing Parallelization Opportunities

What is the Dependence?

FOR I =1 to n
FOR J =1 to n
A[I, J] = A[I-1, J+1] + 1

What is the Dependence?

FOR I =1 to n
FOR J =1 to n
A[I, J] = A[I-1, J+1] + 1

O O O O

e

What is the Dependence?

FOR I =1 to n
FOR J =1 to n
A[I, J] = A[I-1, J+1] + 1

What is the Dependence?

FOR I =1 to n
FOR J =1 to n
A[I, J] = A[I-1, J+1] + 1

to n
1l to n
B[I-1] + 1

ANANNNN
NNV
~ LN NN
ahaharanay
LUTUU

wwaes | AN

o
Q
O
Q

©
-
Q
Q.
Q

o
Q

e

)

2

I, J] = A[I
1l to n
=1 ton
= B[I-1] + 1

[

e
(o)
)
) —
a !
= 5 = !
S s
(@)
=

FOR J
B[I]

FOR I

What is the Dependence?

FOR i = 1 to N-1
FOR j = 1 to N-1
A[i,j] = A[1,]3-1] + A[i-1,3];

Recognizing FORALL Loops

e Find data dependences in loop
— For every pair of array acceses to the same array

If the first access has at least one dynamic instance (an iteration)
in which it refers to a location in the array that the second access

also refers to in at least one of the later dynamic instances
(iterations).
Then there is a data dependence between the statements

— (Note that same array can refer to itself — output dependences)

e Definition

— Loop-carried dependence:
dependence that crosses a loop boundary

o If there are no loop carried dependences - parallelizable

Data Dependence Analysis

e I: Distance Vector method
e [I: Integer Programming

Distance Vector Method

e The it loop is parallelizable for all
dependence d = [dy,...,d,..d]
either

one of dq,...,d._;is > 0

or
alldy,...,d, =0

Is the Loop Parallelizable?

mE vee QQQQQQ FRI=0ctos

A[I] = A[I] + 1

M\ FOR I =0 to 5
(\vvﬂ

A[I+1] = A[I] + 1

FOR I =0 to 5
A[I] = A[I+2] + 1

FOR I =0 to 5
A[I] = A[0] + 1

Are the Loops Parallelizable?

FOR I =1 to n
FOR J =1 to n
A[I, J] = A[I, J-1] + 1

Ul vYes
1 No

dv =

FOR I =1 to n
FOR J =1 to n
A[I, J] = A[I+1, J] + 1

)\ [o]
Yes

NN
TNV
J%%%%%

J+1] + 1

=1 to n
FOR J =1 ton
/ = A[I-1,
=1 to n
=1 to n
= B[I-1] + 1

A
1

J]
No

I

[

FOR J
B[I]

FOR I
FOR I

o
9
Q0
)
N
[
I
et
(")
o
()]
Q
o
)
ol
Q
i e
)
/)
e
<L

dv =

Integer Programming Method

e Example
FOR I = 0 to 5
A[I+1] = A[I] + 1

o Is there a loop-carried dependence between A[I+1] and A[I]

— Are there two distinct iterations i, and i. such that A[i,+1] is the
same location as A[i,]

— Jintegersi,, i 0<i, i, <5 i,= I

e Is there a dependence between A[I+1] and A[I+1]

— Are there two distinct iterations i; and i, such that A[i;+1] is the
same location as A[i,+1]

Integer Programming Method

FORI =0 to 5
A[I+1] = A[I] + 1

e Formulation

— 3 an integer vector i such that AT < b where
A is an integer matrix and b is an integer vector

Iteration Space

FORI =0 to 5
A[I+1] = A[I] + 1

e N deep loops - n-dimensional
discrete cartesian space

o Affine loop nest - Iteration
space as a set of linear
inequalities

0<I
I<6
I1<]
J<7

O O O O

>

Integer Programming Method

FOR I = 0 to 5
) A[I+1l] = A[I] + 1
e Formulation

— 3 an integer vector i’ such that AT < b where
A is an integer matrix and b is an integer vector

e Our problem formulation for A[i] and A[i+1]

— Jintegersi,, i, 0<i, 1. <5 I,= I I,+1= 1

— I, = I is not an affine function

e divide into 2 problems

e Problem 1 with i, < i. and problem 2 with i, <'i,

e If either problem has a solution - there exists a dependence
— How about i, + 1 = i

e Add two inequalities to single problem
i, t1<i,andi < i,+1

Integer Programming Formulation

FOR I = 0 to 5
e Problem 1 A[I+1] = A[I] + 1

0<i,

Integer Programming Formulation

FOR I = 0 to 5
e Problem 1 A[I+1] = A[I] + 1

0<i,

9
9
9
9
9
9
9

Integer Programming Formulation

e Problem 1

0<i, 0

9
9
9
9
9
9
9

e and problem 2 with i, < i,

Generalization
e An affine loop nest

FOR i, = £,,(c;..c,) to I (c;..c,)
= f£,,(i;,c5.¢,) to I ,(1i;,c,..c)

= £,(1;.1, ;,¢5..¢) to I, (i;.1,,,C;..C)

A[f_,(i,.i,,¢c;.¢.), £,(i;.i,,¢ci.¢.) ., £ (i7..1,,Cq.0)]

e SoIve 2*n problems of the form

Jn 17/ l < jn
Jn—l’ Jn < 1n
Jn—l

ln—l

J1/

Jy, 1
Jy, 3
Jy, 3

A

Jis 3
Jis 3

A AL
A

Outline

e Increasing Parallelization Opportunities

Increasing Parallelization
Opportunities

e Scalar Privatization

e Reduction Recognition

e Induction Variable Identification
e Array Privatization

e | oop Transformations

e Granularity of Parallelism

e Interprocedural Parallelization

Scalar Privatization

e Example

FOR i =1 to n
X = A[i] * 3;
B[i] = X;

e [s there a loop carried dependence?
e What is the type of dependence?

Privatization

e Analysis:
— Any anti- and output- loop-carried dependences

e Eliminate by assigning in local context
FOR 1 =1 ton
integer Xtmp;
Xtmp = A[i] * 3;
B[i] = Xtmp;

e Eliminate by expanding into an array
FOR i =1 to n
Xtmp[i] = A[i] * 3;
B[i] = Xtmp[i];

Privatization

e Need a final assignment to maintain the correct
value after the loop nest

e Eliminate by assigning in local context
FOR i =1 to n
integer Xtmp;
Xtmp = A[1i] * 3;
B[i] = Xtmp;
if(i == n) X = Xtmp

e Eliminate by expanding into an array
FOR i =1 to n
Xtmp[i] = A[i] * 3;
B[i] = Xtmp[i];
X = Xtmp[n];

Another Example

e How about |loop-carried true
dependences?

e Example

FOR 1i =1 to n
X =X+ A[i];

e [s this loop parallelizable?

Reduction Recognition

e Reduction Analysis:
— Only associative operations
— The result is never used within the loop

e Transformation

Integer Xtmp [NUMPROC] ;
Barrier () ;
FOR i1 = myPid*Iters to MIN((myPid+1l) *Iters, n)
Xtmp [myPid] = Xtmp[myPid] + A[i];
Barrier () ;
If (myPid == 0) {
FOR p = 0 to NUMPROC-1
X = X + Xtmp[p];

Induction Variables

Example

FOR 1 = 0 to N
A[i] = 2*1i;

After strength reduction
t=1
FOR i = 0 to N

A[i] = t;

t = t*2;

What happened to loop carried dependences?

Need to do opposite of this!

— Perform induction variable analysis
— Rewrite IVs as a function of the loop variable

Array Privatization

e Similar to scalar privatization

e However, analysis is more complex

— Array Data Dependence Analysis:
Checks if two iterations access the same location

— Array Data Flow Analysis:
Checks if two iterations access the same value

e Transformations
— Similar to scalar privatization

— Private copy for each processor or expand with an
additional dimension

Loop Transformations

e A loop may not be parallel as is
e Example

FOR i = 1 to N-1
FOR j = 1 to N-1
A[lIJ] = A[llj_]'] + A[i_lrj];

Loop Transformations

e A loop may not be parallel as is
e Example

FOR i = 1 to N-1
FOR j = 1 to N-1
Ali,j] = A[i,3-1] + A[i-1,3]];

o After loop Skewing
FOR i = 1 to 2*N-3
FORPAR j = max(l,i-N+2) to min(i, N-1)
A[i-j+1,3j] = A[i-j+1,3j-1]1 + A[i-j,3];

Granularity of Parallelism

e Example
FOR i = 1 to N-1
FOR j = 1 to N-1
A[i,3] = A[i,3] + A[i-1,3];

)
!
e Gets transformed into ;I[

FOR i = 1 to N-1
Barrier () ;
FOR j = 1+ myPid*Iters to MIN((myPid+1l) *Iters, n-1)
A[i,j] = A[i,3] + A[i-1,3];
Barrier() ;

e Inner loop parallelism can be expensive

— Startup and teardown overhead of parallel regions
— Lot of synchronization
— Can even lead to slowdowns

Granularity of Parallelism

e Inner loop parallelism can be expensive

e Solutions

— Don't parallelize if the amount of work within
the loop is too small

or
— Transform into outer-loop parallelism

Outer Loop Parallelism

e Example
FOR i = 1 to N-1
FOR j = 1 to N-1
A[i,3] = A[i,3] + A[i-1,3];

o After Loop Transpose
FOR j = 1 to N-1
FOR i = 1 to N-1
A[i,3j] = A[i,j]1 + A[i-1,3];

e Get mapped into
Barrier() ;
FOR j = 1+ myPid*Iters to MIN((myPid+1l) *Iters, n-1)
FOR i = 1 to N-1
Ali,j] = A[i,j] + A[i-1,3];
Barrier() ;

Unimodular Transformations

e Interchange, reverse and skew

e Use a matrix transformation
= A I

I

new

e Interchange
e Reverse

e Skew

Legality of Transformations

e Unimodular transformation with matrix A is valid iff.
For all dependence vectors v
the first non-zero in Av is positive

e Example
FOR i = 1 to N-1
FOR j = 1 to N-1

A[J-/J] = A[J-/J] + A[i_lrj];

0 1 0 1171 0] [0 1

+ Interchange [EHR]
10 _1 011 0] [=1 0

e Reverse 0101=01
11 1 1971 0] [l 1

. Skew

Interprocedural Parallelization

e Function calls will make a loop unparallelizatble
— Reduction of available parallelism
— A lot of inner-loop parallelism

e Solutions
— Interprocedural Analysis
— Inlining

Interprocedural Parallelization

e Issues
— Same function reused many times
— Analyze a function on each trace - Possibly exponential
— Analyze a function once = unrealizable path problem

e Interprocedural Analysis
— Need to update all the analysis
— Complex analysis
— Can be expensive

e Inlining
— Works with existing analysis
— Large code bloat = can be very expensive

HashSet h;
fori=1ton
int v = compute(i);
h.insert(i);

Are iterations independent?
Can you still execute the loop in parallel?
Do all parallel executions give same result?

Summary

e Multicores are here
— Need parallelism to keep the performance gains
— Programmer defined or compiler extracted parallelism

o Automatic parallelization of loops with arrays
— Requires Data Dependence Analysis
— Iteration space & data space abstraction
— An integer programming problem

e Many optimizations that'll increase parallelism

