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Loop Optimizations 

•  Important because lots of computation occurs in 
loops 

•  We will study two optimizations 
– Loop-invariant code motion 
–  Induction variable elimination 



What is a Loop? 



What is a Loop? 

•  Set of nodes 
•  Loop header 

– Single node 
– All iterations of loop 

go through header  
•  Back edge 



Anamalous Situations 

•  Two back edges, 
two loops, one 
header 

•  Compiler merges 
loops 

 
•  No loop header, 

no loop 



Defining Loops With Dominators 
•  Concept of dominator 

–  Node n dominates a node m if all paths from start node to m go 
through n 

–  “The road to the Super Bowl goes through New England” 
Conclusion? New England dominates the Super Bowl! 

•  If d1 and d2 both dominate n, then either 
–  d1 dominates d2, or 
–  d2 dominates d1 (but not both – look at path from start) 

•  Immediate dominator n – last dominator of n on any path 
from start node 



Dominator Tree 

•  Nodes are nodes of control flow graph 
•  Edge from d to n if d immediate dominator of n 
•  This structure is a tree 
•  Rooted at start node 



Example Dominator Tree 
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Dominator Conditions 

•  When does n dominate m? 
– When n dominates all predecessors of m 
– When n = m (convenient default) 

•  Suggests dataflow-like algorithm for computing 
dominators 



Dominator Algorithm 
D(n0) = {n0} 
for n in N – { n0} do D(n) = N 
while D changes do 

 for n ∈ N - { n0} do 
  D(n) = { n } ∪         ∩           D(p) 

                                    p ∈ pred(n)  
•  Why does the algorithm complete? 
•  Why does the algorithm get right answer? 
•  Note complete recomputation of D on every iteration 
•  Could run a worklist algorithm 
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{ 1, 2, 3, 4, 5, 6, 7 } 

{ 1, 2, 3, 4, 5, 6, 7 } 

{ 1, 2, 3, 4, 5, 6, 7 } 

{ 1, 2, 3, 4, 5, 6, 7 } { 1, 2, 3, 4, 5, 6, 7 } 

Dominator Computation 

{ 1, 2, 3, 4, 5, 6, 7 } 

{ 1 } 
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{ 1, 2 } 

{ 1, 2, 3, 4, 5, 6, 7 } 

{ 1, 2, 3, 4, 5, 6, 7 } 

{ 1, 2, 3, 4, 5, 6, 7 } { 1, 2, 3, 4, 5, 6, 7 } 

Dominator Computation 

{ 1, 2, 3, 4, 5, 6, 7 } 

{ 1 } 
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{ 1, 2 } 

{ 1, 2, 3, 4, 5, 6, 7 } 

{ 1, 2, 3, 4, 5, 6, 7 } { 1, 2, 3, 4, 5, 6, 7 } 

Dominator Computation 

{ 1, 2, 3, 4, 5, 6, 7 } 

{ 1 } 

{ 1, 3} 
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{ 1, 2 } 

{ 1, 2, 3, 4, 5, 6, 7 } { 1, 2, 3, 4, 5, 6, 7 } 

Dominator Computation 

{ 1, 2, 3, 4, 5, 6, 7 } 

{ 1 } 

{ 1, 3, 4 } 

{ 1, 3} 
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{ 1, 2 } 

{ 1, 3} 

{ 1, 3, 4 } 

{ 1, 3, 4, 5 } { 1, 3, 4, 6 } 

Dominator Computation 

{ 1, 2, 3, 4, 5, 6, 7 } 

{ 1 } 
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{ 1, 2 } 

{ 1, 3} 

{ 1, 3, 4 } 

{ 1, 3, 4, 5 } { 1, 3, 4, 6 } 

Dominator Computation 

{ 1, 3, 4} 

{ 1 } 



Defining Loops 

•  Unique entry point – header 
•  At least one path back to header 
•  Find edges whose heads dominate tails 

– These edges are back edges of loops 
– Given back edge n→d 
– Loop consists of n, d plus all nodes that can reach n 

without going through d     
 (all nodes “between” d and n) 

–  d is loop header  



Two Loops In Example 
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Loop Construction Algorithm 
insert(m) 

 if m ∉ loop then  
  loop = loop ∪{m} 
  push m onto stack 

loop(d,n)   
 loop = { d }; stack = ∅; insert(n); 
 while stack not empty do  
  m = pop stack; 
  for all p∈pred(m) do insert(p)  



Nested Loops 

•  If two loops do not have same header then 
– Either one loop (inner loop) contained in other 

(outer loop) 
– Or two loops are disjoint 

•  If two loops have same header, typically 
unioned and treated as one loop 

1 

2 3 

Two loops: 
   {1,2} and {1, 3} 
Unioned: {1,2,3} 



Loop Preheader 

•  Many optimizations stick code before loop 
•  Put a special node (loop preheader) before loop 

to hold this code 



Loop Optimizations 

•  Now that we have the loop, can optimize it! 
•  Loop invariant code motion 

– Stick loop invariant code in the header 



Detecting Loop Invariant Code 

•  A statement is invariant if operands are 
– Constant, 
– Have all reaching definitions outside loop, or 
– Have exactly one reaching definition, and that 

definition comes from an invariant statement 
•  Concept of exit node of loop 

–  node with successors outside loop 



Loop Invariant Code Detection 
Algorithm 

for all statements in loop 
 if operands are constant or have all reaching definitions 
outside loop, mark statement as invariant 

do  
 for all statements in loop not already marked invariant 
  if operands are constant, have all reaching  

 definitions outside loop, or have exactly one 
 reaching  definition from invariant statement then  

   mark statement as invariant 
until find no more invariant statements 



Loop Invariant Code Motion 
•  Conditions for moving a statement s:x:=y+z 

into loop header: 
–  s dominates all exit nodes of loop 

•  If it doesn’t, some use after loop might get wrong value 
•  Alternate condition: definition of x from s reaches no use 

outside loop (but moving s may increase run time) 
– No other statement in loop assigns to x 

•  If one does, assignments might get reordered 
– No use of x in loop is reached by definition other 

than s 
•  If one is, movement may change value read by use 



Order of Statements in Preheader 
Preserve data dependences from original program 
(can use order in which discovered by algorithm) 

b = 2 
i = 0 

i < 80 

a = b * b 
c = a+a 
i = i + c 

b = 2 
i = 0 

i < 80 

i = i + c 

a = b * b 
c = a+a 



Induction Variable Elimination 

i = 0 

i < 10 

i = i + 1 
p = 4*i use of p 

p = 0 

p < 40 

p = p + 4 use of p 



What is an Induction Variable? 

•  Base induction variable 
– Only assignments in loop are of form i = i ± c 

•  Derived induction variables 
– Value is a linear function of a base induction 

variable 
– Within loop, j = c*i + d, where i is a base induction 

variable 
– Very common in array index expressions – an 

access to a[i] produces code like p = a + 4*i 



Strength Reduction for Derived 
Induction Variables 

i = 0 

i < 10 

i = i + 1 
p = 4*i use of p 

i = 0 
p = 0 

i < 10 

i = i + 1 
p = p + 4 use of p 



Elimination of Superfluous 
Induction Variables 

p = 0 

p < 40 

p = p + 4 use of p 

i = 0 
p = 0 

i < 10 

i = i + 1 
p = p + 4 use of p 



Three Algorithms 

•  Detection of induction variables 
– Find base induction variables 
– Each base induction variable has a family of 

derived induction variables, each of which is a 
linear function of base induction variable 

•  Strength reduction for derived induction 
variables 

•  Elimination of superfluous induction variables 



Output of Induction Variable 
Detection Algorithm 

•  Set of induction variables 
–  base induction variables 
–  derived induction variables 

•  For each induction variable j, a triple <i,c,d> 
–  i is a base induction variable 
–  value of j is i*c+d 
–  j belongs to family of i 



Induction Variable Detection Algorithm 
Scan loop to find all base induction variables 
do 

Scan loop to find all variables k with one assignment of 
form k = j*b where j is an induction variable with 
triple <i,c,d> 
 make k an induction variable with triple <i,c*b,d*b> 

Scan loop to find all variables k with one assignment of 
form k = j±b where j is an induction variable with 
triple <i,c,d> 
 make k an induction variable with triple <i,c,b±d> 

until no more induction variables found 



Strength Reduction Algorithm 

for all derived induction variables j with triple 
<i,c,d> 
 Create a new variable s 
 Replace assignment j = i*c+d with j = s 
 Immediately after each assignment i = i + e, 
insert statement s = s + c*e (c*e is constant) 
 place s in family of i with triple <i,c,d> 
 Insert s = c*i+d into preheader 



Strength Reduction for Derived 
Induction Variables 

i = 0 

i < 10 

i = i + 1 
p = 4*i use of p 

i = 0 
p = 0 

i < 10 

i = i + 1 
p = p + 4 use of p 



Induction Variable Elimination 
Choose a base induction variable i such that 

 only uses of i are in  
  termination condition of the form i < n 
  assignment of the form i = i + m 

Choose a derived induction variable k with <i,c,d> 
 Replace termination condition with k < c*n+d 

Why? 
 k = i*c+d ⇒ i < n ⇔ i*c < c*n ⇔ i*c+d < c*n+d 

         ⇔ k < c*n+d 



Induction Variable Wrapup 

•  There is lots more to induction variables 
– more general classes of induction variables 
– more general transformations involving induction 

variables 



Summary 

•  Wide range of analyses and optimizations 
•  Dataflow Analyses and Corresponding 

Optimizations 
–  reaching definitions, constant propagation 
–  live variable analysis, dead code elimination 

•  Induction variable analyses and optimizations 
– Strength reduction 
–  Induction variable elimination 
–  Important because of time spent in loops 


