
1 

Register Allocation 

Outline 
•  What is register allocation 
•  Webs 
•  Interference Graphs 
•  Graph coloring 
•  Spilling 
•  Splitting 
•  More optimizations 

5 

Storing values between def and use 
•  Program computes with values 

–  value definitions (where computed) 
–  value uses (where read to compute new values) 

•  Values must be stored between def and use 
–  First Option 

•  store each value in memory at definition 
•  retrieve from memory at each use 

–  Second Option 
•  store each value in register at definition 
•  retrieve value from register at each use 

Register Allocation 
•  Deciding which values to store in limited  

number of registers 

•  Register allocation has a direct impact on 
performance 
–  Affects almost every statement of the program 
–  Eliminates expensive memory instructions 
–  # of instructions goes down due to direct 

manipulation of registers  
•  Limited mem-to-mem ALU ops, may need two instructions 

–  Probably is the optimization with the most impact! 

What can be put in a register? 
•  Values stored in compiler-generated temps  

•  Language-level values 
–  Values stored in local scalar variables 
–  Big constants 
–  Values stored in array elements and object fields  

•  Issue: alias analysis 

•  Register set depends on the data-type 
–  floating-point values in floating point registers 
–  integer and pointer values in integer registers 

Issues 
•  Fewer instructions when using registers 

–  Additional instructions when using memory accesses 

•  Registers are faster than memory 
–  wider gap in faster, newer processors 
–  Factor of about 4 bandwidth, factor of about 3 latency 
–  Could be bigger if program characteristics were different 

•  But only a small number of registers available 
–  Usually 16 integer and 16 floating-point registers 
–  Some of those registers have fixed users (ex: RSP, RBP) 



2 

Outline 
•  What is register allocation 
•  Key ideas in register allocation 
•  Webs 
•  Interference Graphs 
•  Graph coloring 
•  Splitting 
•  More optimizations 

15 

Summary of Register Allocation 
•  You want to put each temporary in a register 

–  But, you don’t have enough registers. 

•  Key Ideas:  
–  When a temporary goes dead, its register can be reused 
–  Two live temporaries can’t use the same register at the same time 

Summary of Register Allocation 
•  When a temporary goes dead, its register can be reused 
•  Example: 

a := c + d 
e := a + b 
f := e - 1 

(assume that a and e die after use) 
•  temporaries a, e and f can go in the same register 

r1 := c + d 
r1 := r1 + b 
r1:= r1 – 1 

Summary of Register Allocation 
•  Two live temporaries can’t use the same register at the 

same time 

•  Example 2: 
a := c + d 
e := a + b 
f := e - a 

•  temporaries e and a can not go in the same register 
r1 := c + d 
r2 := r1 + b 
r1 := r2 – r1 

•  Sometimes more live variables than registers 
a := c + d 
e := c + b 
f := e – c 
g := e + f 
h := a + g 

(assume only g and h live at the end) 
•  You can split a live range by storing to memory 

a := c + d 
store a 
e := c + b 
f := e – c 
g := e + f 
load a 
h := a + g 

When things don’t work out 

Won’t work for 
2 registers 

Web-Based Register Allocation 
•  Determine live ranges for each value (web) 
•  Determine overlapping ranges (interference) 
•  Compute the benefit of keeping each web in a 

register (spill cost) 
•  Decide which webs get a register (allocation) 
•  Split webs if needed (spilling and splitting) 
•  Assign hard registers to webs (assignment) 
•  Generate code including spills (code gen) 



3 

Outline 
•  What is register allocation 
•  Key ideas in register allocation 
•  Webs 
•  Interference Graphs 
•  Graph coloring 
•  Splitting 
•  More optimizations 

25 

Webs 
•  Starting Point: def-use chains (DU chains) 

–  Connects definition to all reachable uses 

•  Conditions for putting defs and uses into same 
web 
–  Def and all reachable uses must be in same web 
–  All defs that reach same use must be in same web 

•  Use a union-find algorithm 

Example 

def y 

def x 
use y 

def x 
def y 

use x 
def x 

use x 

use x 
use y 

Example 

def y 

def x 
use y 

def x 
def y 

use x 
def x 

use x 

use x 
use y 

Example 

def y 

def x 
use y 

def x 
def y 

use x 
def x 

use x 

use x 
use y 

Example 

def y 

def x 
use y 

def x 
def y 

use x 
def x 

use x 

use x 
use y 



4 

Example 

def y 

def x 
use y 

def x 
def y 

use x 
def x 

use x 

use x 
use y 

Example 

def y 

def x 
use y 

def x 
def y 

use x 
def x 

use x 

use x 
use y 

Example 

def y 

def x 
use y 

def x 
def y 

use x 
def x 

use x 

use x 
use y 

Example 

def y 

def x 
use y 

def x 
def y 

use x 
def x 

use x 

use x 
use y 

s1 

s2 

s3 

s4 

Webs 
•  Web is unit of register allocation 

•  If web allocated to a given register R 
–  All definitions computed into R 
–  All uses read from R 

•  If web allocated to a memory location M 
–  All definitions computed into M 
–  All uses read from M 

Outline 
•  What is register allocation 
•  Webs 
•  Interference Graphs 
•  Graph coloring 
•  Splitting 
•  More optimizations 

31 



5 

Convex Sets and Live Ranges 
•  Concept of convex set  

•  A set S is convex if 
–  A, B in S and C is on a path from A to B implies 
–  C is in S 

•  Concept of live range of a web 
–  Minimal convex set of instructions that includes all defs 

and uses in web 
–  Intuitively, region in which web’s value is live 

Interference 
•  Two webs interfere if their live ranges overlap 

(have a nonemtpy intersection) 

•  If two webs interfere, values must be stored in 
different registers or memory locations 

•  If two webs do not interfere, can store values in 
same register or memory location 

Example 

def y 

def x 
use y 

def x 
def y 

use x 
def x 

use x 

use x 
use y 

s1 

s2 

s3 

s4 

Example 

def y 

def x 
use y 

use x 
def x 

use x 

s1 

s2 

s3 

s4 

def x 
def y 

use x 
use y 

Example 

def y 

def x 
use y 

use x 
def x 

use x 

s1 

s2 

s3 

s4 

def x 
def y 

use x 
use y 

Webs s1 and s2 interfere 
Webs s2 and s3 interfere 

Interference Graph 
•  Representation of webs and their interference 

–  Nodes are the webs 
–  An edge exists between two nodes if they interfere 

s1 s2 

s3 s4 



6 

Example 

def y 

def x 
use y 

use x 
def x 

use x 

s1 

s2 

s3 

s4 

def x 
def y 

use x 
use y 

s1 s2 

s3 s4 

Example 

def y 

def x 
use y 

use x 
def x 

use x 

s1 

s2 

s3 

s4 

def x 
def y 

use x 
use y 

Webs s1 and s2 interfere 
Webs s2 and s3 interfere 

s1 s2 

s3 s4 

Outline 
•  Overview of procedure optimizations 
•  What is register allocation 
•  A simple register allocator 
•  Webs 
•  Interference Graphs 
•  Graph coloring 
•  Splitting 
•  More optimizations 

37 Register Allocation Using  
Graph Coloring 

•  Each web is allocated a register 
–  each node gets a register (color) 

•  If two webs interfere they cannot use the same 
register 
–  if two nodes have an edge between them, they cannot 

have the same color 

s1 s2 

s3 s4 

Graph Coloring 
•  Assign a color to each node in graph 

•  Two nodes connected to same edge must have 
different colors 

•  Classic problem in graph theory 

•  NP complete 
–  But good heuristics exist for register allocation 

Graph Coloring Example 



7 

Graph Coloring Example 

•    1 Color 

Graph Coloring Example 

Graph Coloring Example 

•    2 Colors 

Graph Coloring Example 

Graph Coloring Example 

•    Still 2 Colors 

Graph Coloring Example 



8 

Graph Coloring Example 

•    3 Colors 

Heuristics for Register Coloring 
•  Coloring a graph with N colors  
•  If degree < N (degree of a node = # of edges) 

–  Node can always be colored 
–  After coloring the rest of the nodes, you’ll have at least 

one color left to color the current node 
•  If degree >= N 

–  still may be colorable with N colors 

Heuristics for Register Coloring 
•  Remove nodes that have degree < N 

–  push the removed nodes onto a stack 

•  When all the nodes have degree >= N  
–   Find a node to spill (no color for that node) 
–  Remove that node 

•  When empty, start to color 
–  pop a node from stack back 
–  Assign it a color that is different from its connected 

nodes (since degree < N, a color should exist) 

Coloring Example 

s1 s2 

s3 s4 

s0 

N = 3 

Coloring Example 

s1 s2 

s3 s4 

s0 

N = 3 

Coloring Example 

s1 s2 

s3 s4 

s0 

N = 3 

s4 



9 

Coloring Example 

s1 s2 

s3 s4 

s0 

N = 3 

s4 
s2 

Coloring Example 

s1 s2 

s3 s4 

s0 

N = 3 

s4 
s2 
s1 

Coloring Example 

s1 s2 

s3 s4 

s0 

N = 3 

s4 
s2 
s1 
s3 

Coloring Example 

s1 s2 

s3 s4 

s0 

N = 3 

s4 
s2 
s1 
s3 

Coloring Example 

s1 s2 

s3 s4 

s0 

N = 3 

s4 
s2 
s1 
s3 

Coloring Example 

s1 s2 

s3 s4 

s0 

N = 3 

s4 
s2 
s1 



10 

Coloring Example 

s1 s2 

s3 s4 

s0 

N = 3 

s4 
s2 
s1 

Coloring Example 

s1 s2 

s3 s4 

s0 

N = 3 

s4 
s2 

Coloring Example 

s1 s2 

s3 s4 

s0 

N = 3 

s4 
s2 

Coloring Example 

s1 s2 

s3 s4 

s0 

N = 3 

s4 

Coloring Example 

s1 s2 

s3 s4 

s0 

N = 3 

s4 

Coloring Example 

s1 s2 

s3 s4 

s0 

N = 3 



11 

Coloring Example 

s1 s2 

s3 s4 

s0 

N = 3 

Another Coloring Example 

s1 s2 

s3 s4 

s0 

N = 3 

Another Coloring Example 

s1 s2 

s3 s4 

s0 

N = 3 

s4 

Another Coloring Example 

s1 s2 

s3 s4 

s0 

N = 3 

s4 

Another Coloring Example 

s1 s2 

s3 s4 

s0 

N = 3 

s4 
s3 

Another Coloring Example 

s1 s2 

s3 s4 

s0 

N = 3 

s4 
s3 
s2 



12 

Another Coloring Example 

s1 s2 

s3 s4 

s0 

N = 3 

s4 
s3 
s2 

Another Coloring Example 

s1 s2 

s3 s4 

s0 

N = 3 

s4 
s3 
s2 

Another Coloring Example 

s1 s2 

s3 s4 

s0 

N = 3 

s4 
s3 

Another Coloring Example 

s1 s2 

s3 s4 

s0 

N = 3 

s4 
s3 

Another Coloring Example 

s1 s2 

s3 s4 

s0 

N = 3 

s4 

Another Coloring Example 

s1 s2 

s3 s4 

s0 

N = 3 

s4 



13 

Another Coloring Example 

s1 s2 

s3 s4 

s0 

N = 3 

Another Coloring Example 

s1 s2 

s3 s4 

s0 

N = 3 

What Now? 
•  Option 1 

–  Pick a web and allocate value in memory 
–  All defs go to memory, all uses come from memory 

•  Option 2 
–  Split the web into multiple webs 

•  In either case, will retry the coloring 

Which web to pick? 
•  One with interference degree >= N 
•  One with minimal spill cost (cost of placing value 

in memory rather than in register) 
•  What is spill cost?  

–  Cost of extra load and store instructions 

Ideal and Useful Spill Costs 
•  Ideal spill cost - dynamic cost of extra load and 

store instructions. Can’t expect to compute this. 
–  Don’t know which way branches resolve 
–  Don’t know how many times loops execute 
–  Actual cost may be different for different executions 

•  Solution: Use a static approximation 
–  profiling can give instruction execution frequencies 
–  or use heuristics based on structure of control flow 

graph 

One Way to Compute Spill Cost 
•  Goal: give priority to values used in loops 
•  So assume loops execute 10 or 100 times 
•  Spill cost = 

–  sum over all def sites of cost of a store instruction 
times 10 to the loop nesting depth power, plus 

–  sum over all use sites of cost of a load instruction times 
10 to the loop nesting depth power 

•  Choose the web with the lowest spill cost 



14 

Spill Cost Example 

def x 
def y 

use y 
def y 

use x 
use y 

Spill Cost For x 
storeCost+loadCost 

 

Spill Cost For y 
9*storeCost+9*loadCost 

 

With 1 Register, Which 
Variable Gets Spilled? 

 

Outline 
•  Overview of procedure optimizations 
•  What is register allocation 
•  A simple register allocator 
•  Webs 
•  Interference Graphs 
•  Graph coloring 
•  Splitting 
•  More optimizations 

47 

Splitting Rather Than Spilling 
•  Split the web 

–  Split a web into multiple webs so that there will be less 
interference in the interference graph making it N-
colorable 

–  Spill the value to memory and load it back at the points 
where the web is split 

Splitting Example 
def z 
use z 

def x 
def y 
use x 
use x 
use y 

use z 

x y z 

Splitting Example 
def z 
use z 

def x 
def y 
use x 
use x 
use y 

use z 

x y z 

x y 

z 

Splitting Example 
def z 
use z 

def x 
def y 
use x 
use x 
use y 

use z 

x y z 

x y 

z 

2 colorable? 



15 

Splitting Example 
def z 
use z 

def x 
def y 
use x 
use x 
use y 

use z 

x y z 

x y 

z 

2 colorable? 
NO! 

Splitting Example 
def z 
use z 

def x 
def y 
use x 
use x 
use y 

use z 

x y z 

Splitting Example 
def z 
use z 

def x 
def y 
use x 
use x 
use y 

use z 

x y z 
Splitting Example 

def z 
use z 

def x 
def y 
use x 
use x 
use y 

use z 

x y z 

x y 

z2 

z1 

Splitting Example 
def z 
use z 

def x 
def y 
use x 
use x 
use y 

use z 

x y z 

x y 

z2 

z1 

2 colorable? 

Splitting Example 
def z 
use z 

def x 
def y 
use x 
use x 
use y 

use z 

x y z 

x y 

z2 

z1 

2 colorable? 
YES! 



16 

Splitting Example 
def z 
use z 

def x 
def y 
use x 
use x 
use y 

use z 

x y z 

r1 
r2 

r1 

r1 

x y 

z2 

z1 

2 colorable? 
YES! 

Splitting Example 
def z 
use z 
str z 

def x 
def y 
use x 
use x 
use y 

ld z 
use z 

x y z 

r1 
r2 

r1 

r1 

x y 

z2 

z1 

2 colorable? 
YES! 

Splitting Heuristic 
•  Identify a program point where the graph is not R-

colorable (point where # of webs > N) 
–  Pick a web that is not used for the largest enclosing 

block around that point of the program 
–  Split that web at the corresponding edge 
–  Redo the interference graph 
–  Try to re-color the graph 

Cost and benefit of splitting 
•  Cost of splitting a node 

–  Proportional to number of times splitted edge has to be 
crossed dynamically 

–  Estimate by its loop nesting 
•  Benefit 

–  Increase colorability of the nodes the splitted web 
interferes with 

–  Can approximate by its degree in the interference graph 
•  Greedy heuristic 

–  pick the live-range with the highest benefit-to-cost ration to 
spill 

Outline 
•  Overview of procedure optimizations 
•  What is register allocation 
•  A simple register allocator 
•  Webs 
•  Interference Graphs 
•  Graph coloring 
•  Splitting 
•  More optimizations 

52 

Further Optimizations 
•  Register coalescing 
•  Register targeting (pre-coloring) 
•  Presplitting of webs 
•  Interprocedural register allocation 



17 

Register Coalescing 
•  Find register copy instructions sj = si 

•  If sj and si do not interfere, combine their webs 

•  Pros 
–  similar to copy propagation 
–  reduce the number of instructions 

•  Cons 
–  may increase the degree of the combined node 
–  a colorable graph may become non-colorable 

Register Targeting (pre-coloring) 
•  Some variables need to be in special registers at 

a given time 
–  fist 6 arguments to a function 
–  return value 

•  Pre-color those webs and bind them to the right 
register 

•  Will eliminate unnecessary copy instructions 

Pre-splitting of the webs 
•  Some live ranges have very large “dead” regions. 

–  Large region where the variable is unused 

•  Break up the live ranges 
–  need to pay a small cost in spilling  
–  but the graph will be very easy to color 

•  Can find strategic locations to break-up 
–  at a call site (need to spill anyway) 
–  around a large loop nest (reserve registers for values 

used in the loop) 

Interprocedural register 
allocation 

•  saving registers across procedure boundaries is 
expensive  
–  especially for programs with many small functions 

•  Calling convention is too general and inefficient 

•  Customize calling convention per function by 
doing interprocedural register allocation 

Summary 
•  Register Allocation 

–  Store values in registers between def and use 
–  Can improve performance substantially 

•  Key concepts 
–  Webs 
–  Interference graphs 
–  Colorability 
–  Splitting 


