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Dataflow Analysis 

•  Compile-Time Reasoning About 
•  Run-Time Values of Variables or Expressions 
•  At Different Program Points 

– Which assignment statements produced value of 
variable at this point? 

– Which variables contain values that are no longer 
used after this program point? 

– What is the range of possible values of variable at 
this program point? 

Program Representation 

•  Control Flow Graph 
– Nodes N – statements of program 
– Edges E – flow of control 

•  pred(n) = set of all predecessors of n 
•  succ(n) = set of all successors of n 

– Start node n0 

– Set of final nodes Nfinal 

Program Points 

•  One program point before each node 
•  One program point after each node 
•  Join point – point with multiple predecessors 
•  Split point – point with multiple successors 

Basic Idea 

•  Information about program represented using 
values from algebraic structure called lattice 

•  Analysis produces lattice value for each 
program point 

•  Two flavors of analysis 
– Forward dataflow analysis 
– Backward dataflow analysis 

Forward Dataflow Analysis 
•  Analysis propagates values forward through control 

flow graph with flow of control 
– Each node has a transfer function f 

•  Input – value at program point before node 
• Output – new value at program point after node 

– Values flow from program points after predecessor 
nodes to program points before successor nodes 

– At join points, values are combined using a merge 
function  

•  Canonical Example: Reaching Definitions 
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Backward Dataflow Analysis 
•  Analysis propagates values backward through control 

flow graph against flow of control 
– Each node has a transfer function f 

•  Input – value at program point after node 
• Output – new value at program point before node 

– Values flow from program points before successor 
nodes to program points after predecessor nodes 

– At split points, values are combined using a merge 
function 

–  Canonical Example: Live Variables 

Partial Orders 

•  Set P 
•  Partial order ≤ such that ∀x,y,z∈P 

–  x ≤ x      (reflexive) 
–  x ≤ y and y ≤ x implies x = y  (asymmetric) 
–  x ≤ y and y ≤ z implies x ≤ z  (transitive) 

•  Can use partial order to define 
– Upper and lower bounds 
– Least upper bound 
– Greatest lower bound 

Upper Bounds 

•  If S ⊆ P then 
–  x∈P is an upper bound of S if ∀y∈S. y ≤ x 
–  x∈P is the least upper bound of S if 

•  x is an upper bound of S, and  
•  x ≤ y for all upper bounds y of S 

– ∨ - join, least upper bound, lub, supremum, sup 
•  ∨ S is the least upper bound of S 
•  x ∨ y is the least upper bound of {x,y} 

Lower Bounds 

•  If S ⊆ P then 
–  x∈P is a lower bound of S if ∀y∈S. x ≤ y 
–  x∈P is the greatest lower bound of S if 

•  x is a lower bound of S, and  
•  y ≤ x for all lower bounds y of S 

– ∧ - meet, greatest lower bound, glb, infimum, inf 
•  ∧ S is the greatest lower bound of S 
•  x ∧ y is the greatest lower bound of {x,y} 

Covering 

•  x< y if x ≤ y and x≠y  
•  x is covered by y (y covers x) if 

–  x < y, and 
–  x ≤ z < y implies x = z 

•  Conceptually, y covers x if there are no 
elements between x and y 

Example 
•  P = { 000, 001, 010, 011, 100, 101, 110, 111} 

(standard boolean lattice, also called hypercube) 
•  x ≤ y if (x bitwise and y) = x 

111 

011 
101 

110 

010 
001 

000 

100 

Hasse Diagram 
•  If y covers x 

•  Line from y to x 
•  y above x in diagram 
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Lattices 

•  If x ∧ y and x ∨ y exist for all x,y∈P,  
  then P is a lattice. 

•  If ∧S and ∨S exist for all S ⊆ P,   
  then P is a complete lattice. 

•  All finite lattices are complete 

Lattices 
•  If x ∧ y and x ∨ y exist for all x,y∈P,   

 then P is a lattice. 
•  If ∧S and ∨S exist for all S ⊆ P,    

 then P is a complete lattice. 
•  All finite lattices are complete 
•  Example of a lattice that is not complete 

–  Integers I 
–  For any x, y∈I, x ∨ y = max(x,y), x ∧ y = min(x,y) 
–  But ∨ I and ∧ I do not exist 
–  I ∪ {+∞,-∞ } is a complete lattice 

Top and Bottom 

•  Greatest element of P (if it exists) is top 
•  Least element of P (if it exists) is bottom (⊥) 

Connection Between ≤, ∧, and ∨ 
•  The following 3 properties are equivalent: 

–  x ≤ y 
–  x ∨ y = y  
–  x ∧ y = x 

•  Will prove: 
–  x ≤ y implies x ∨ y = y and x ∧ y = x 
–  x ∨ y = y implies x ≤ y 
–  x ∧ y = x implies x ≤ y 

•  Then by transitivity, can obtain  
–  x ∨ y = y implies x ∧ y = x  
–  x ∧ y = x implies x ∨ y = y 

Connecting Lemma Proofs 

•  Proof of x ≤ y implies x ∨ y = y 
–  x ≤ y implies y is an upper bound of {x,y}. 
– Any upper bound z of {x,y} must satisfy y ≤ z. 
– So y is least upper bound of {x,y} and x ∨ y = y 

•  Proof of x ≤ y implies x ∧ y = x 
–  x ≤ y implies x is a lower bound of {x,y}. 
– Any lower bound z of {x,y} must satisfy z ≤ x. 
– So x is greatest lower bound of {x,y} and x ∧ y = x 

Connecting Lemma Proofs 

•  Proof of x ∨ y = y implies x ≤ y 
–  y is an upper bound of {x,y} implies x ≤ y 

•  Proof of x ∧ y = x implies x ≤ y 
–  x is a lower bound of {x,y} implies x ≤ y 
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Lattices as Algebraic Structures 

•  Have defined ∨ and ∧ in terms of ≤ 
•  Will now define ≤ in terms of ∨ and ∧ 

– Start with ∨ and ∧ as arbitrary algebraic operations 
that satisfy associative, commutative, idempotence, 
and absorption laws 

– Will define ≤ using ∨ and ∧ 
– Will show that ≤ is a partial order 

•  Intuitive concept of ∨ and ∧ as information 
combination operators (or, and) 

Algebraic Properties of Lattices 

Assume arbitrary operations ∨ and ∧ such that 
–  (x ∨ y) ∨ z = x ∨ (y ∨ z)  (associativity of ∨) 
–  (x ∧ y) ∧ z = x ∧ (y ∧ z)  (associativity of ∧) 
–  x ∨ y = y ∨ x    (commutativity of ∨) 
–  x ∧ y = y ∧ x    (commutativity of ∧) 
–  x ∨ x = x    (idempotence of ∨) 
–  x ∧ x = x    (idempotence of ∧) 
–  x ∨ (x ∧ y) = x  (absorption of ∨ over ∧) 
–  x ∧ (x ∨ y) = x  (absorption of ∧ over ∨) 

Connection Between ∧ and ∨  

•  x ∨ y = y if and only if x ∧ y = x 
•  Proof of x ∨ y = y implies x = x ∧ y 

x = x ∧ (x ∨ y)  (by absorption) 
   = x ∧ y   (by assumption) 

•  Proof of x ∧ y = x implies y = x ∨ y 
y = y ∨ (y ∧ x)  (by absorption) 
   = y ∨ (x ∧ y)  (by commutativity) 
   = y ∨ x   (by assumption) 
   = x ∨ y   (by commutativity) 

Properties of ≤ 

•  Define x ≤ y if x ∨ y = y 
•  Proof of transitive property. Must show that 

  x ∨ y = y and y ∨ z = z implies x ∨ z = z 
x ∨ z = x ∨ (y ∨ z)  (by assumption) 
         = (x ∨ y) ∨ z (by associativity) 
         = y ∨ z  (by assumption) 
          = z   (by assumption) 

Properties of ≤ 

•  Proof of asymmetry property. Must show that 
 x ∨ y = y and y ∨ x = x implies x = y 

x = y ∨ x  (by assumption) 
   = x ∨ y  (by commutativity) 
   = y   (by assumption) 

•  Proof of reflexivity property. Must show that 
 x ∨ x = x 

 x ∨ x = x  (by idempotence) 

Properties of ≤ 

•  Induced operation ≤ agrees with original 
definitions of ∨ and ∧, i.e.,  
–  x ∨ y = sup {x, y} 
–  x ∧ y = inf {x, y} 
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Proof of x ∨ y = sup {x, y} 

•  Consider any upper bound u for x and y. 
•  Given x ∨ u = u and y ∨ u = u, must show         

x ∨ y ≤ u, i.e., (x ∨ y) ∨ u = u 
u = x ∨ u   (by assumption) 
   = x ∨ (y ∨ u)  (by assumption) 
   = (x ∨ y) ∨ u  (by associativity) 

Proof of x ∧ y = inf {x, y} 

•  Consider any lower bound l for x and y. 
•  Given x ∧ l = l and y ∧ l = l, must show          

l ≤ x ∧ y, i.e., (x ∧ y) ∧ l = l 
l = x ∧ l   (by assumption) 
  = x ∧ (y ∧ l)   (by assumption) 
  = (x ∧ y) ∧ l   (by associativity) 

Chains 

•  A set S is a chain if ∀x,y∈S. y ≤ x or x ≤ y  
•  P has no infinite chains if every chain in P is 

finite 
•  P satisfies the ascending chain condition if     

for all sequences x1 ≤ x2 ≤ …there exists n   
such that xn = xn+1 = … 

Application to Dataflow Analysis 

•  Dataflow information will be lattice values 
– Transfer functions operate on lattice values 
– Solution algorithm will generate increasing 

sequence of values at each program point 
– Ascending chain condition will ensure termination 

•  Will use ∨ to combine values at control-flow 
join points 

Transfer Functions 

•  Transfer function f: P→P for each node in 
control flow graph 

•  f models effect of the node on the program 
information 

Transfer Functions 
Each dataflow analysis problem has a set F of 

transfer functions f: P→P 
–  Identity function i∈F 
– F must be closed under composition:             
∀f,g∈F. the function h = λx.f(g(x)) ∈F 

– Each f ∈F must be monotone:    
 x ≤ y implies f(x) ≤ f(y) 

– Sometimes all f ∈F are distributive:                       
 f(x ∨ y) = f(x) ∨ f(y) 

– Distributivity implies monotonicity 
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Distributivity Implies Monotonicity 

•  Proof of distributivity implies monotonicity 
•  Assume f(x ∨ y) = f(x) ∨ f(y) 
•  Must show: x ∨ y = y implies f(x) ∨ f(y) = f(y) 

f(y) = f(x ∨ y)  (by assumption) 
       = f(x) ∨ f(y)  (by distributivity) 

Putting Pieces Together 

•  Forward Dataflow Analysis Framework 
•  Simulates execution of program forward with 

flow of control 

Forward Dataflow Analysis 
•  Simulates execution of program forward with 

flow of control 
•  For each node n, have 

–  inn – value at program point before n 
–  outn – value at program point after n 
–  fn – transfer function for n (given inn, computes outn) 

•  Require that solution satisfy 
– ∀n. outn = fn(inn) 
– ∀n ≠ n0. inn = ∨ { outm . m in pred(n) } 
–  inn0 = I 
– Where I summarizes information at start of program 

Dataflow Equations 

•  Compiler processes program to obtain a set of 
dataflow equations 

  outn := fn(inn) 

  inn := ∨ { outm . m in pred(n) } 

•  Conceptually separates analysis problem from 
program 

Worklist Algorithm for Solving 
Forward Dataflow Equations 

for each n do outn := fn(⊥) 
inn0 := I; outn0 := fn0(I) 
worklist := N - { n0 } 
while worklist ≠ ∅ do 

 remove a node n from worklist 
 inn := ∨ { outm . m in pred(n) } 
 outn := fn(inn) 
 if outn changed then  
  worklist := worklist ∪ succ(n) 

Correctness Argument 

•  Why result satisfies dataflow equations 
•  Whenever process a node n, set outn := fn(inn) 

Algorithm ensures that outn = fn(inn)  
•  Whenever outm changes, put succ(m) on worklist. 

Consider any node n ∈ succ(m). It will eventually come 
off worklist and algorithm will set  

  inn := ∨ { outm . m in pred(n) }              
to ensure that inn = ∨ { outm . m in pred(n) } 

•  So final solution will satisfy dataflow equations   



7 

Termination Argument 

•  Why does algorithm terminate? 
•  Sequence of values taken on by inn or outn is a 

chain. If values stop increasing, worklist 
empties and algorithm terminates. 

•  If lattice has ascending chain property, 
algorithm terminates 
– Algorithm terminates for finite lattices 
– For lattices without ascending chain property, use 

widening operator 

Widening Operators 
•  Detect lattice values that may be part of infinitely 

ascending chain 
•  Artificially raise value to least upper bound of chain 
•  Example:  

– Lattice is set of all subsets of integers 
– Could be used to collect possible values taken on by 

variable during execution of program 
– Widening operator might raise all sets of size n or 

greater to TOP (likely to be useful for loops) 

Reaching Definitions 
•  P = powerset of set of all definitions in program (all 

subsets of set of definitions in program) 
•  ∨ = ∪ (order is ⊆) 
•  ⊥ = ∅ 
•  I = inn0 = ⊥ 
•  F = all functions f of the form f(x) = a ∪ (x-b) 

–  b is set of definitions that node kills 
–  a is set of definitions that node generates 

•  General pattern for many transfer functions 
–  f(x) = GEN ∪ (x-KILL) 

Does Reaching Definitions 
Framework Satisfy Properties? 

•  ⊆ satisfies conditions for ≤ 
–  x ⊆ y and y ⊆ z implies x ⊆ z (transitivity) 
–  x ⊆ y and y ⊆ x implies y = x (asymmetry) 
–  x ⊆ x (idempotence) 

•  F satisfies transfer function conditions 
– λx.∅ ∪ (x- ∅) = λx.x∈F (identity) 
– Will show f(x ∪ y) = f(x) ∪ f(y) (distributivity) 

f(x) ∪ f(y) = (a ∪ (x – b)) ∪ (a ∪ (y – b)) 
                  = a ∪ (x – b) ∪ (y – b) = a ∪ ((x ∪ y) – b) 
                  = f(x ∪ y) 

Does Reaching Definitions 
Framework Satisfy Properties? 

•  What about composition? 
– Given f1(x) = a1 ∪ (x-b1) and f2(x) = a2 ∪ (x-b2) 
– Must show f1(f2(x)) can be expressed as a ∪ (x - b) 

f1(f2(x)) = a1 ∪ ((a2 ∪ (x-b2)) - b1) 
              = a1 ∪ ((a2 - b1) ∪ ((x-b2) - b1)) 
              = (a1 ∪ (a2 - b1)) ∪ ((x-b2) - b1)) 
              = (a1 ∪ (a2 - b1)) ∪ (x-(b2 ∪ b1)) 

– Let a = (a1 ∪ (a2 - b1)) and b = b2 ∪ b1 

– Then f1(f2(x)) = a ∪ (x – b) 

General Result 

All GEN/KILL transfer function frameworks 
satisfy 
–  Identity 
– Distributivity 
– Composition 

Properties 
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Available Expressions 
•  P = powerset of set of all expressions in 

program (all subsets of set of expressions) 
•  ∨ = ∩ (order is ⊆) 
•  ⊥ = P  
•  I = inn0 = ∅ 
•  F = all functions f of the form f(x) = a ∪ (x-b) 

–  b is set of expressions that node kills 
–  a is set of expressions that node generates 

•  Another GEN/KILL analysis 

Concept of Conservatism 

•  Reaching definitions use ∪ as join 
– Optimizations must take into account all definitions 

that reach along ANY path 
•  Available expressions use ∩ as join 

– Optimization requires expression to reach along 
ALL paths 

•  Optimizations must conservatively take all 
possible executions into account. Structure of 
analysis varies according to way analysis used. 

Backward Dataflow Analysis 
•  Simulates execution of program backward against 

the flow of control 
•  For each node n, have 

–  inn – value at program point before n 
–  outn – value at program point after n 
–  fn – transfer function for n (given outn, computes inn) 

•  Require that solution satisfies 
– ∀n. inn = fn(outn) 
– ∀n ∉ Nfinal. outn = ∨ { inm . m in succ(n) } 
– ∀n ∈ Nfinal = outn = O 
– Where O summarizes information at end of program 

Worklist Algorithm for Solving 
Backward Dataflow Equations 

for each n do inn := fn(⊥) 
for each n ∈ Nfinal do outn := O; inn := fn(O) 
worklist := N - Nfinal  
while worklist ≠ ∅ do 

 remove a node n from worklist 
 outn := ∨ { inm . m in succ(n) } 
 inn := fn(outn) 
 if inn changed then  
  worklist := worklist ∪ pred(n) 

 

Live Variables 

•  P = powerset of set of all variables in program 
(all subsets of set of variables in program) 

•  ∨ = ∪ (order is ⊆) 
•  ⊥ = ∅ 
•  O = ∅ 
•  F = all functions f of the form f(x) = a ∪ (x-b) 

–  b is set of variables that node kills 
–  a is set of variables that node reads 

Meaning of Dataflow Results 
•  Concept of program state s for control-flow graphs 

•  Program point n where execution located                     
(n is node that will execute next) 

•  Values of  variables in program 
•  Each execution generates a trajectory of states: 

–  s0;s1;…;sk,where each si ∈ST 
–  si+1 generated from si by executing basic block to  

• Update variable values 
• Obtain new program point n 
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Relating States to Analysis Result 
•  Meaning of analysis results is given by an 

abstraction function AF:ST→P 
•  Correctness condition: require that for all states s 

  AF(s) ≤ inn 
where n is the next statement to execute in state s 

Sign Analysis Example 

•  Sign analysis - compute sign of each variable v 
•  Base Lattice: P = flat lattice on {-,0,+} 

•  Actual lattice records a value for each variable 
– Example element: [a→+, b→0, c→-] 

- 0 + 

TOP 

BOT 

Interpretation of Lattice Values 

•  If value of v in lattice is: 
– BOT: no information about sign of v 
–  -: variable v is negative 
–  0: variable v is 0  
– +: variable v is positive 
– TOP: v may be positive or negative 

•  What is abstraction function AF? 
– AF([x1,…,xn]) = [sign(x1), …, sign(xn)]  
– Where sign(x) = 0 if x = 0, + if x > 0, - if x < 0 

Operation ⊗ on Lattice 

⊗ BOT - 0 + TOP 

BOT BOT - 0 + TOP 

- - + 0 - TOP 

0 0 0 0 0 0 

+ + - 0 + TOP 

TOP TOP TOP 0 TOP TOP 

Transfer Functions 

•  If n of the form v = c 
–  fn(x) = x[v→+] if c is positive 
–  fn(x) = x[v→0] if c is 0 
–  fn(x) = x[v→-] if c is negative 

•  If n of the form v1 = v2*v3 
–  fn(x) = x[v1→x[v2] ⊗ x[v3]] 

•  I = TOP       
 (uninitialized variables may have any sign) 

 

Example 

b = -1 b = 1 

a = 1 

[a→+] [a→+] 

[a→+, b→+] [a→+, b→-] 

[a→+, b→TOP] 
c = a*b 

[a→+, b→TOP,c →TOP] 
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Imprecision In Example 

b = -1 b = 1 

a = 1 

[a→+] [a→+] 

[a→+, b→+] [a→+, b→-] 

[a→+, b→TOP] 
c = a*b 

Abstraction Imprecision: 
[a→1] abstracted as [a→+]  
  

Control Flow Imprecision: 
[b→TOP] summarizes results of all executions. In any 
execution state s, AF(s)[b]≠TOP 
  

General Sources of Imprecision 
•  Abstraction Imprecision 

–  Concrete values (integers) abstracted as lattice values (-,0, and +) 
–  Lattice values less precise than execution values 
–  Abstraction function throws away information 

•  Control Flow Imprecision 
–  One lattice value for all possible control flow paths 
–  Analysis result has a single lattice value to summarize results of 

multiple concrete executions 
–  Join operation ∨ moves up in lattice to combine values from 

different execution paths 
–  Typically if x ≤ y, then x is more precise than y 

Why Have Imprecision 

•  Make analysis tractable 
•  Unbounded sets of values in execution 

– Typically abstracted by finite set of lattice values 
•  Execution may visit unbounded set of states 

– Abstracted by computing joins of different paths 

Abstraction Function 
•  AF(s)[v] = sign of v 

– AF(n,[a→5, b→0, c→-2]) = [a→+, b→0, c→-] 
•  Establishes meaning of the analysis results 

–  If analysis says variable has a given sign 
– Always has that sign in actual execution 

•  Correctness condition:  
– ∀ v. AF(s)[v] ≤ inn[v] (n is node for s) 
– Reflects possibility of imprecision 

Abstraction Function Soundness 

•  Will show       
 ∀ v. AF(s)[v] ≤ inn[v] (n is node for s) 

by induction on length of computation that 
produced s 

•  Base case: 
– ∀ v. inn0[v] = TOP, which implies that 
– ∀ v. AF(s)[v] ≤ TOP 

Induction Step 
•  Assume ∀ v. AF(s)[v] ≤ inn[v] for computations of length k 
•  Prove for computations of length k+1 
•  Proof: 

–  Given s (state), n (node to execute next), and inn 
–  Find p (the node that just executed), sp(the previous state), 

and inp 
–  By induction hypothesis ∀ v. AF(sp)[v] ≤ inp[v] 
–  Case analysis on form of n 

•  If n of the form v = c, then  
– s[v] = c and outp [v] = sign(c), so          

AF(s)[v] = sign(c) = outp [v] ≤ inn[v] 
–  If x≠v, s[x] = sp [x] and outp [x] = inp[x], so  

 AF(s)[x] = AF(sp)[x] ≤ inp[x] = outp [x] ≤ inn[x] 
•  Similar reasoning if n of the form v1 = v2*v3 
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Augmented Execution States 

•  Abstraction functions for some analyses require 
augmented execution states 
– Reaching definitions: states are augmented with 

definition that created each value 
– Available expressions: states are augmented with 

expression for each value 

Meet Over Paths Solution 
•  What solution would be ideal for a forward dataflow 

analysis problem?  
•  Consider a path p = n0, n1, …, nk, n to a node n  

 (note that for all i ni ∈ pred(ni+1)) 
•  The solution must take this path into account: 

fp (⊥) = (fnk(fnk-1(…fn1(fn0(⊥)) …)) ≤ inn 

•  So the solution must have the property that   
 ∨{fp (⊥) . p is  a path to n} ≤ inn 

 and ideally  

  ∨{fp (⊥) . p is  a path to n} = inn 
 

Soundness Proof of Analysis 
Algorithm 

•  Property to prove: 
For  all paths p to n,  fp (⊥) ≤ inn 

•  Proof is by induction on length of p 
– Uses monotonicity of transfer functions 
– Uses following lemma 

•  Lemma: 
Worklist algorithm produces a solution such that 

 fn(inn) = outn 
 if n ∈ pred(m) then outn ≤ inm 

Proof 

•  Base case: p is of length 1 
– Then p = n0 and fp(⊥) = ⊥ = inn0 

•  Induction step: 
– Assume theorem for all paths of length k 
– Show for an arbitrary path p of length k+1 

Induction Step Proof 
•  p = n0, …, nk, n 
•  Must show fk(fk-1(…fn1(fn0(⊥)) …)) ≤ inn 

– By induction (fk-1(…fn1(fn0(⊥)) …)) ≤ innk 

– Apply fk to both sides, by monotonicity we get
  fk(fk-1(…fn1(fn0(⊥)) …)) ≤ fk(innk)  

– By lemma, fk(innk) = outnk 

– By lemma, outnk ≤ inn 

– By transitivity,  fk(fk-1(…fn1(fn0(⊥)) …)) ≤ inn 

Distributivity 

•  Distributivity preserves precision 
•  If framework is distributive, then worklist 

algorithm produces the meet over paths solution 
– For all n: 

  ∨{fp (⊥) . p is  a path to n} = inn 
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Lack of Distributivity Example 
•  Constant Calculator 
•  Flat Lattice on Integers 

•  Actual lattice records a value for each variable 
– Example element: [a→3, b→2, c→5] 

-1 1 0 

TOP 

BOT 

-2 2 … … 

Transfer Functions 

•  If n of the form v = c 
–  fn(x) = x[v→c] 

•  If n of the form v1 = v2+v3 
–  fn(x) = x[v1→x[v2] + x[v3]] 

•  Lack of distributivity 
– Consider transfer function f for c = a + b 
–  f([a→3, b→2]) ∨ f([a→2, b→3]) = [a→TOP, b→TOP, c→5] 
–  f([a→3, b→2]∨[a→2, b→3]) = f([a→TOP, b→TOP]) = 

[a→TOP, b→TOP, c→TOP] 

Lack of Distributivity Anomaly 

a = 2 
b = 3 

a = 3 
b = 2 

       

[a→3, b→2] [a→2, b→3] 

[a→TOP, b→TOP] 
c = a+b 

[a→TOP, b→TOP, c →TOP] 

Lack of Distributivity Imprecision: 
[a→TOP, b→TOP, c→5] more precise 
  

What is the meet over all paths solution? 

How to Make Analysis Distributive 

•  Keep combinations of values on different paths 

a = 2 
b = 3 

a = 3 
b = 2 

{[a→3, b→2]} {[a→2, b→3]} 

{[a→2, b→3], [a→3, b→2]}  
c = a+b 

{[a→2, b→3,c→5], [a→3, b→2,c→5]}  

Issues 

•  Basically simulating all combinations of values 
in all executions 
– Exponential blowup 
– Nontermination because of infinite ascending chains 

•  Nontermination solution 
– Use widening operator to eliminate blowup          

(can make it work at granularity of variables) 
– Loses precision in many cases 

Multiple Fixed Points 
•  Dataflow analysis generates least fixed point 
•  May be multiple fixed points 
•  Available expressions example 

a = x +y 

i == 0 

nop b = x+y; 

0  

1  

0  

0  
0  

0  

0  

1  

a = x +y 

i == 0 

nop b = x+y; 

0  

1  

1  

1  
1  

1  

1  

1  
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Summary 

•  Formal dataflow analysis framework 
– Lattices, partial orders 
– Transfer functions, joins and splits 
– Dataflow equations and fixed point solutions 

•  Connection with program 
– Abstraction function AF: S → P 
– For any state s and program point n, AF(s) ≤ inn 
– Meet over all paths solutions, distributivity 


