
1

MIT 6.035
Foundations of Dataflow Analysis

Martin Rinard
Laboratory for Computer Science

Massachusetts Institute of Technology

Dataflow Analysis

•  Compile-Time Reasoning About
•  Run-Time Values of Variables or Expressions
•  At Different Program Points

– Which assignment statements produced value of
variable at this point?

– Which variables contain values that are no longer
used after this program point?

– What is the range of possible values of variable at
this program point?

Program Representation

•  Control Flow Graph
– Nodes N – statements of program
– Edges E – flow of control

•  pred(n) = set of all predecessors of n
•  succ(n) = set of all successors of n

– Start node n0

– Set of final nodes Nfinal

Program Points

•  One program point before each node
•  One program point after each node
•  Join point – point with multiple predecessors
•  Split point – point with multiple successors

Basic Idea

•  Information about program represented using
values from algebraic structure called lattice

•  Analysis produces lattice value for each
program point

•  Two flavors of analysis
– Forward dataflow analysis
– Backward dataflow analysis

Forward Dataflow Analysis
•  Analysis propagates values forward through control

flow graph with flow of control
– Each node has a transfer function f

•  Input – value at program point before node
• Output – new value at program point after node

– Values flow from program points after predecessor
nodes to program points before successor nodes

– At join points, values are combined using a merge
function

•  Canonical Example: Reaching Definitions

2

Backward Dataflow Analysis
•  Analysis propagates values backward through control

flow graph against flow of control
– Each node has a transfer function f

•  Input – value at program point after node
• Output – new value at program point before node

– Values flow from program points before successor
nodes to program points after predecessor nodes

– At split points, values are combined using a merge
function

–  Canonical Example: Live Variables

Partial Orders

•  Set P
•  Partial order ≤ such that ∀x,y,z∈P

–  x ≤ x (reflexive)
–  x ≤ y and y ≤ x implies x = y (asymmetric)
–  x ≤ y and y ≤ z implies x ≤ z (transitive)

•  Can use partial order to define
– Upper and lower bounds
– Least upper bound
– Greatest lower bound

Upper Bounds

•  If S ⊆ P then
–  x∈P is an upper bound of S if ∀y∈S. y ≤ x
–  x∈P is the least upper bound of S if

•  x is an upper bound of S, and
•  x ≤ y for all upper bounds y of S

– ∨ - join, least upper bound, lub, supremum, sup
•  ∨ S is the least upper bound of S
•  x ∨ y is the least upper bound of {x,y}

Lower Bounds

•  If S ⊆ P then
–  x∈P is a lower bound of S if ∀y∈S. x ≤ y
–  x∈P is the greatest lower bound of S if

•  x is a lower bound of S, and
•  y ≤ x for all lower bounds y of S

– ∧ - meet, greatest lower bound, glb, infimum, inf
•  ∧ S is the greatest lower bound of S
•  x ∧ y is the greatest lower bound of {x,y}

Covering

•  x< y if x ≤ y and x≠y
•  x is covered by y (y covers x) if

–  x < y, and
–  x ≤ z < y implies x = z

•  Conceptually, y covers x if there are no
elements between x and y

Example
•  P = { 000, 001, 010, 011, 100, 101, 110, 111}

(standard boolean lattice, also called hypercube)
•  x ≤ y if (x bitwise and y) = x

111

011
101

110

010
001

000

100

Hasse Diagram
•  If y covers x

•  Line from y to x
•  y above x in diagram

3

Lattices

•  If x ∧ y and x ∨ y exist for all x,y∈P,
 then P is a lattice.

•  If ∧S and ∨S exist for all S ⊆ P,
 then P is a complete lattice.

•  All finite lattices are complete

Lattices
•  If x ∧ y and x ∨ y exist for all x,y∈P,

 then P is a lattice.
•  If ∧S and ∨S exist for all S ⊆ P,

 then P is a complete lattice.
•  All finite lattices are complete
•  Example of a lattice that is not complete

–  Integers I
–  For any x, y∈I, x ∨ y = max(x,y), x ∧ y = min(x,y)
–  But ∨ I and ∧ I do not exist
–  I ∪ {+∞,-∞ } is a complete lattice

Top and Bottom

•  Greatest element of P (if it exists) is top
•  Least element of P (if it exists) is bottom (⊥)

Connection Between ≤, ∧, and ∨
•  The following 3 properties are equivalent:

–  x ≤ y
–  x ∨ y = y
–  x ∧ y = x

•  Will prove:
–  x ≤ y implies x ∨ y = y and x ∧ y = x
–  x ∨ y = y implies x ≤ y
–  x ∧ y = x implies x ≤ y

•  Then by transitivity, can obtain
–  x ∨ y = y implies x ∧ y = x
–  x ∧ y = x implies x ∨ y = y

Connecting Lemma Proofs

•  Proof of x ≤ y implies x ∨ y = y
–  x ≤ y implies y is an upper bound of {x,y}.
– Any upper bound z of {x,y} must satisfy y ≤ z.
– So y is least upper bound of {x,y} and x ∨ y = y

•  Proof of x ≤ y implies x ∧ y = x
–  x ≤ y implies x is a lower bound of {x,y}.
– Any lower bound z of {x,y} must satisfy z ≤ x.
– So x is greatest lower bound of {x,y} and x ∧ y = x

Connecting Lemma Proofs

•  Proof of x ∨ y = y implies x ≤ y
–  y is an upper bound of {x,y} implies x ≤ y

•  Proof of x ∧ y = x implies x ≤ y
–  x is a lower bound of {x,y} implies x ≤ y

4

Lattices as Algebraic Structures

•  Have defined ∨ and ∧ in terms of ≤
•  Will now define ≤ in terms of ∨ and ∧

– Start with ∨ and ∧ as arbitrary algebraic operations
that satisfy associative, commutative, idempotence,
and absorption laws

– Will define ≤ using ∨ and ∧
– Will show that ≤ is a partial order

•  Intuitive concept of ∨ and ∧ as information
combination operators (or, and)

Algebraic Properties of Lattices

Assume arbitrary operations ∨ and ∧ such that
–  (x ∨ y) ∨ z = x ∨ (y ∨ z) (associativity of ∨)
–  (x ∧ y) ∧ z = x ∧ (y ∧ z) (associativity of ∧)
–  x ∨ y = y ∨ x (commutativity of ∨)
–  x ∧ y = y ∧ x (commutativity of ∧)
–  x ∨ x = x (idempotence of ∨)
–  x ∧ x = x (idempotence of ∧)
–  x ∨ (x ∧ y) = x (absorption of ∨ over ∧)
–  x ∧ (x ∨ y) = x (absorption of ∧ over ∨)

Connection Between ∧ and ∨

•  x ∨ y = y if and only if x ∧ y = x
•  Proof of x ∨ y = y implies x = x ∧ y

x = x ∧ (x ∨ y) (by absorption)
 = x ∧ y (by assumption)

•  Proof of x ∧ y = x implies y = x ∨ y
y = y ∨ (y ∧ x) (by absorption)
 = y ∨ (x ∧ y) (by commutativity)
 = y ∨ x (by assumption)
 = x ∨ y (by commutativity)

Properties of ≤

•  Define x ≤ y if x ∨ y = y
•  Proof of transitive property. Must show that

 x ∨ y = y and y ∨ z = z implies x ∨ z = z
x ∨ z = x ∨ (y ∨ z) (by assumption)
 = (x ∨ y) ∨ z (by associativity)
 = y ∨ z (by assumption)
 = z (by assumption)

Properties of ≤

•  Proof of asymmetry property. Must show that
 x ∨ y = y and y ∨ x = x implies x = y

x = y ∨ x (by assumption)
 = x ∨ y (by commutativity)
 = y (by assumption)

•  Proof of reflexivity property. Must show that
 x ∨ x = x

 x ∨ x = x (by idempotence)

Properties of ≤

•  Induced operation ≤ agrees with original
definitions of ∨ and ∧, i.e.,
–  x ∨ y = sup {x, y}
–  x ∧ y = inf {x, y}

5

Proof of x ∨ y = sup {x, y}

•  Consider any upper bound u for x and y.
•  Given x ∨ u = u and y ∨ u = u, must show

x ∨ y ≤ u, i.e., (x ∨ y) ∨ u = u
u = x ∨ u (by assumption)
 = x ∨ (y ∨ u) (by assumption)
 = (x ∨ y) ∨ u (by associativity)

Proof of x ∧ y = inf {x, y}

•  Consider any lower bound l for x and y.
•  Given x ∧ l = l and y ∧ l = l, must show

l ≤ x ∧ y, i.e., (x ∧ y) ∧ l = l
l = x ∧ l (by assumption)
 = x ∧ (y ∧ l) (by assumption)
 = (x ∧ y) ∧ l (by associativity)

Chains

•  A set S is a chain if ∀x,y∈S. y ≤ x or x ≤ y
•  P has no infinite chains if every chain in P is

finite
•  P satisfies the ascending chain condition if

for all sequences x1 ≤ x2 ≤ …there exists n
such that xn = xn+1 = …

Application to Dataflow Analysis

•  Dataflow information will be lattice values
– Transfer functions operate on lattice values
– Solution algorithm will generate increasing

sequence of values at each program point
– Ascending chain condition will ensure termination

•  Will use ∨ to combine values at control-flow
join points

Transfer Functions

•  Transfer function f: P→P for each node in
control flow graph

•  f models effect of the node on the program
information

Transfer Functions
Each dataflow analysis problem has a set F of

transfer functions f: P→P
–  Identity function i∈F
– F must be closed under composition:
∀f,g∈F. the function h = λx.f(g(x)) ∈F

– Each f ∈F must be monotone:
 x ≤ y implies f(x) ≤ f(y)

– Sometimes all f ∈F are distributive:
 f(x ∨ y) = f(x) ∨ f(y)

– Distributivity implies monotonicity

6

Distributivity Implies Monotonicity

•  Proof of distributivity implies monotonicity
•  Assume f(x ∨ y) = f(x) ∨ f(y)
•  Must show: x ∨ y = y implies f(x) ∨ f(y) = f(y)

f(y) = f(x ∨ y) (by assumption)
 = f(x) ∨ f(y) (by distributivity)

Putting Pieces Together

•  Forward Dataflow Analysis Framework
•  Simulates execution of program forward with

flow of control

Forward Dataflow Analysis
•  Simulates execution of program forward with

flow of control
•  For each node n, have

–  inn – value at program point before n
–  outn – value at program point after n
–  fn – transfer function for n (given inn, computes outn)

•  Require that solution satisfy
– ∀n. outn = fn(inn)
– ∀n ≠ n0. inn = ∨ { outm . m in pred(n) }
–  inn0 = I
– Where I summarizes information at start of program

Dataflow Equations

•  Compiler processes program to obtain a set of
dataflow equations

 outn := fn(inn)

 inn := ∨ { outm . m in pred(n) }

•  Conceptually separates analysis problem from
program

Worklist Algorithm for Solving
Forward Dataflow Equations

for each n do outn := fn(⊥)
inn0 := I; outn0 := fn0(I)
worklist := N - { n0 }
while worklist ≠ ∅ do

 remove a node n from worklist
 inn := ∨ { outm . m in pred(n) }
 outn := fn(inn)
 if outn changed then
 worklist := worklist ∪ succ(n)

Correctness Argument

•  Why result satisfies dataflow equations
•  Whenever process a node n, set outn := fn(inn)

Algorithm ensures that outn = fn(inn)
•  Whenever outm changes, put succ(m) on worklist.

Consider any node n ∈ succ(m). It will eventually come
off worklist and algorithm will set

 inn := ∨ { outm . m in pred(n) }
to ensure that inn = ∨ { outm . m in pred(n) }

•  So final solution will satisfy dataflow equations

7

Termination Argument

•  Why does algorithm terminate?
•  Sequence of values taken on by inn or outn is a

chain. If values stop increasing, worklist
empties and algorithm terminates.

•  If lattice has ascending chain property,
algorithm terminates
– Algorithm terminates for finite lattices
– For lattices without ascending chain property, use

widening operator

Widening Operators
•  Detect lattice values that may be part of infinitely

ascending chain
•  Artificially raise value to least upper bound of chain
•  Example:

– Lattice is set of all subsets of integers
– Could be used to collect possible values taken on by

variable during execution of program
– Widening operator might raise all sets of size n or

greater to TOP (likely to be useful for loops)

Reaching Definitions
•  P = powerset of set of all definitions in program (all

subsets of set of definitions in program)
•  ∨ = ∪ (order is ⊆)
•  ⊥ = ∅
•  I = inn0 = ⊥
•  F = all functions f of the form f(x) = a ∪ (x-b)

–  b is set of definitions that node kills
–  a is set of definitions that node generates

•  General pattern for many transfer functions
–  f(x) = GEN ∪ (x-KILL)

Does Reaching Definitions
Framework Satisfy Properties?

•  ⊆ satisfies conditions for ≤
–  x ⊆ y and y ⊆ z implies x ⊆ z (transitivity)
–  x ⊆ y and y ⊆ x implies y = x (asymmetry)
–  x ⊆ x (idempotence)

•  F satisfies transfer function conditions
– λx.∅ ∪ (x- ∅) = λx.x∈F (identity)
– Will show f(x ∪ y) = f(x) ∪ f(y) (distributivity)

f(x) ∪ f(y) = (a ∪ (x – b)) ∪ (a ∪ (y – b))
 = a ∪ (x – b) ∪ (y – b) = a ∪ ((x ∪ y) – b)
 = f(x ∪ y)

Does Reaching Definitions
Framework Satisfy Properties?

•  What about composition?
– Given f1(x) = a1 ∪ (x-b1) and f2(x) = a2 ∪ (x-b2)
– Must show f1(f2(x)) can be expressed as a ∪ (x - b)

f1(f2(x)) = a1 ∪ ((a2 ∪ (x-b2)) - b1)
 = a1 ∪ ((a2 - b1) ∪ ((x-b2) - b1))
 = (a1 ∪ (a2 - b1)) ∪ ((x-b2) - b1))
 = (a1 ∪ (a2 - b1)) ∪ (x-(b2 ∪ b1))

– Let a = (a1 ∪ (a2 - b1)) and b = b2 ∪ b1

– Then f1(f2(x)) = a ∪ (x – b)

General Result

All GEN/KILL transfer function frameworks
satisfy
–  Identity
– Distributivity
– Composition

Properties

8

Available Expressions
•  P = powerset of set of all expressions in

program (all subsets of set of expressions)
•  ∨ = ∩ (order is ⊆)
•  ⊥ = P
•  I = inn0 = ∅
•  F = all functions f of the form f(x) = a ∪ (x-b)

–  b is set of expressions that node kills
–  a is set of expressions that node generates

•  Another GEN/KILL analysis

Concept of Conservatism

•  Reaching definitions use ∪ as join
– Optimizations must take into account all definitions

that reach along ANY path
•  Available expressions use ∩ as join

– Optimization requires expression to reach along
ALL paths

•  Optimizations must conservatively take all
possible executions into account. Structure of
analysis varies according to way analysis used.

Backward Dataflow Analysis
•  Simulates execution of program backward against

the flow of control
•  For each node n, have

–  inn – value at program point before n
–  outn – value at program point after n
–  fn – transfer function for n (given outn, computes inn)

•  Require that solution satisfies
– ∀n. inn = fn(outn)
– ∀n ∉ Nfinal. outn = ∨ { inm . m in succ(n) }
– ∀n ∈ Nfinal = outn = O
– Where O summarizes information at end of program

Worklist Algorithm for Solving
Backward Dataflow Equations

for each n do inn := fn(⊥)
for each n ∈ Nfinal do outn := O; inn := fn(O)
worklist := N - Nfinal
while worklist ≠ ∅ do

 remove a node n from worklist
 outn := ∨ { inm . m in succ(n) }
 inn := fn(outn)
 if inn changed then
 worklist := worklist ∪ pred(n)

Live Variables

•  P = powerset of set of all variables in program
(all subsets of set of variables in program)

•  ∨ = ∪ (order is ⊆)
•  ⊥ = ∅
•  O = ∅
•  F = all functions f of the form f(x) = a ∪ (x-b)

–  b is set of variables that node kills
–  a is set of variables that node reads

Meaning of Dataflow Results
•  Concept of program state s for control-flow graphs

•  Program point n where execution located
(n is node that will execute next)

•  Values of variables in program
•  Each execution generates a trajectory of states:

–  s0;s1;…;sk,where each si ∈ST
–  si+1 generated from si by executing basic block to

• Update variable values
• Obtain new program point n

9

Relating States to Analysis Result
•  Meaning of analysis results is given by an

abstraction function AF:ST→P
•  Correctness condition: require that for all states s

 AF(s) ≤ inn
where n is the next statement to execute in state s

Sign Analysis Example

•  Sign analysis - compute sign of each variable v
•  Base Lattice: P = flat lattice on {-,0,+}

•  Actual lattice records a value for each variable
– Example element: [a→+, b→0, c→-]

- 0 +

TOP

BOT

Interpretation of Lattice Values

•  If value of v in lattice is:
– BOT: no information about sign of v
–  -: variable v is negative
–  0: variable v is 0
– +: variable v is positive
– TOP: v may be positive or negative

•  What is abstraction function AF?
– AF([x1,…,xn]) = [sign(x1), …, sign(xn)]
– Where sign(x) = 0 if x = 0, + if x > 0, - if x < 0

Operation ⊗ on Lattice

⊗ BOT - 0 + TOP

BOT BOT - 0 + TOP

- - + 0 - TOP

0 0 0 0 0 0

+ + - 0 + TOP

TOP TOP TOP 0 TOP TOP

Transfer Functions

•  If n of the form v = c
–  fn(x) = x[v→+] if c is positive
–  fn(x) = x[v→0] if c is 0
–  fn(x) = x[v→-] if c is negative

•  If n of the form v1 = v2*v3
–  fn(x) = x[v1→x[v2] ⊗ x[v3]]

•  I = TOP
 (uninitialized variables may have any sign)

Example

b = -1 b = 1

a = 1

[a→+] [a→+]

[a→+, b→+] [a→+, b→-]

[a→+, b→TOP]
c = a*b

[a→+, b→TOP,c →TOP]

10

Imprecision In Example

b = -1 b = 1

a = 1

[a→+] [a→+]

[a→+, b→+] [a→+, b→-]

[a→+, b→TOP]
c = a*b

Abstraction Imprecision:
[a→1] abstracted as [a→+]

Control Flow Imprecision:
[b→TOP] summarizes results of all executions. In any
execution state s, AF(s)[b]≠TOP

General Sources of Imprecision
•  Abstraction Imprecision

–  Concrete values (integers) abstracted as lattice values (-,0, and +)
–  Lattice values less precise than execution values
–  Abstraction function throws away information

•  Control Flow Imprecision
–  One lattice value for all possible control flow paths
–  Analysis result has a single lattice value to summarize results of

multiple concrete executions
–  Join operation ∨ moves up in lattice to combine values from

different execution paths
–  Typically if x ≤ y, then x is more precise than y

Why Have Imprecision

•  Make analysis tractable
•  Unbounded sets of values in execution

– Typically abstracted by finite set of lattice values
•  Execution may visit unbounded set of states

– Abstracted by computing joins of different paths

Abstraction Function
•  AF(s)[v] = sign of v

– AF(n,[a→5, b→0, c→-2]) = [a→+, b→0, c→-]
•  Establishes meaning of the analysis results

–  If analysis says variable has a given sign
– Always has that sign in actual execution

•  Correctness condition:
– ∀ v. AF(s)[v] ≤ inn[v] (n is node for s)
– Reflects possibility of imprecision

Abstraction Function Soundness

•  Will show
 ∀ v. AF(s)[v] ≤ inn[v] (n is node for s)

by induction on length of computation that
produced s

•  Base case:
– ∀ v. inn0[v] = TOP, which implies that
– ∀ v. AF(s)[v] ≤ TOP

Induction Step
•  Assume ∀ v. AF(s)[v] ≤ inn[v] for computations of length k
•  Prove for computations of length k+1
•  Proof:

–  Given s (state), n (node to execute next), and inn
–  Find p (the node that just executed), sp(the previous state),

and inp
–  By induction hypothesis ∀ v. AF(sp)[v] ≤ inp[v]
–  Case analysis on form of n

•  If n of the form v = c, then
– s[v] = c and outp [v] = sign(c), so

AF(s)[v] = sign(c) = outp [v] ≤ inn[v]
–  If x≠v, s[x] = sp [x] and outp [x] = inp[x], so

 AF(s)[x] = AF(sp)[x] ≤ inp[x] = outp [x] ≤ inn[x]
•  Similar reasoning if n of the form v1 = v2*v3

11

Augmented Execution States

•  Abstraction functions for some analyses require
augmented execution states
– Reaching definitions: states are augmented with

definition that created each value
– Available expressions: states are augmented with

expression for each value

Meet Over Paths Solution
•  What solution would be ideal for a forward dataflow

analysis problem?
•  Consider a path p = n0, n1, …, nk, n to a node n

 (note that for all i ni ∈ pred(ni+1))
•  The solution must take this path into account:

fp (⊥) = (fnk(fnk-1(…fn1(fn0(⊥)) …)) ≤ inn

•  So the solution must have the property that
 ∨{fp (⊥) . p is a path to n} ≤ inn

 and ideally

 ∨{fp (⊥) . p is a path to n} = inn

Soundness Proof of Analysis
Algorithm

•  Property to prove:
For all paths p to n, fp (⊥) ≤ inn

•  Proof is by induction on length of p
– Uses monotonicity of transfer functions
– Uses following lemma

•  Lemma:
Worklist algorithm produces a solution such that

 fn(inn) = outn
 if n ∈ pred(m) then outn ≤ inm

Proof

•  Base case: p is of length 1
– Then p = n0 and fp(⊥) = ⊥ = inn0

•  Induction step:
– Assume theorem for all paths of length k
– Show for an arbitrary path p of length k+1

Induction Step Proof
•  p = n0, …, nk, n
•  Must show fk(fk-1(…fn1(fn0(⊥)) …)) ≤ inn

– By induction (fk-1(…fn1(fn0(⊥)) …)) ≤ innk

– Apply fk to both sides, by monotonicity we get
 fk(fk-1(…fn1(fn0(⊥)) …)) ≤ fk(innk)

– By lemma, fk(innk) = outnk

– By lemma, outnk ≤ inn

– By transitivity, fk(fk-1(…fn1(fn0(⊥)) …)) ≤ inn

Distributivity

•  Distributivity preserves precision
•  If framework is distributive, then worklist

algorithm produces the meet over paths solution
– For all n:

 ∨{fp (⊥) . p is a path to n} = inn

12

Lack of Distributivity Example
•  Constant Calculator
•  Flat Lattice on Integers

•  Actual lattice records a value for each variable
– Example element: [a→3, b→2, c→5]

-1 1 0

TOP

BOT

-2 2 … …

Transfer Functions

•  If n of the form v = c
–  fn(x) = x[v→c]

•  If n of the form v1 = v2+v3
–  fn(x) = x[v1→x[v2] + x[v3]]

•  Lack of distributivity
– Consider transfer function f for c = a + b
–  f([a→3, b→2]) ∨ f([a→2, b→3]) = [a→TOP, b→TOP, c→5]
–  f([a→3, b→2]∨[a→2, b→3]) = f([a→TOP, b→TOP]) =

[a→TOP, b→TOP, c→TOP]

Lack of Distributivity Anomaly

a = 2
b = 3

a = 3
b = 2

[a→3, b→2] [a→2, b→3]

[a→TOP, b→TOP]
c = a+b

[a→TOP, b→TOP, c →TOP]

Lack of Distributivity Imprecision:
[a→TOP, b→TOP, c→5] more precise

What is the meet over all paths solution?

How to Make Analysis Distributive

•  Keep combinations of values on different paths

a = 2
b = 3

a = 3
b = 2

{[a→3, b→2]} {[a→2, b→3]}

{[a→2, b→3], [a→3, b→2]}
c = a+b

{[a→2, b→3,c→5], [a→3, b→2,c→5]}

Issues

•  Basically simulating all combinations of values
in all executions
– Exponential blowup
– Nontermination because of infinite ascending chains

•  Nontermination solution
– Use widening operator to eliminate blowup

(can make it work at granularity of variables)
– Loses precision in many cases

Multiple Fixed Points
•  Dataflow analysis generates least fixed point
•  May be multiple fixed points
•  Available expressions example

a = x +y

i == 0

nop b = x+y;

0

1

0

0
0

0

0

1

a = x +y

i == 0

nop b = x+y;

0

1

1

1
1

1

1

1

13

Summary

•  Formal dataflow analysis framework
– Lattices, partial orders
– Transfer functions, joins and splits
– Dataflow equations and fixed point solutions

•  Connection with program
– Abstraction function AF: S → P
– For any state s and program point n, AF(s) ≤ inn
– Meet over all paths solutions, distributivity

