Dataflow Analysis
MIT 6.035

. . Compile-Time Reasoning About
Foundations of Dataflow Analys1s Run-Time Values of Variables or E
At Different Program Points
Which assignment statements produced value of
variable at this point?
Martin Rinard hich variables contain values that are no longer

) used after this program point?
Laboratory for Computer Science — What is the range of possible values of variable at

Massachusetts Institute of Technology this program point?

Program Representation Program Points

» Control Flow Graph One program point before each node
— Nodes N — statements of program One program point after each node
— Edges E — flow of control

Join point — point with multiple predecessors
* pred(n) = se red sors of' . . . c q
, . B Split point — point with multiple success
* succ(n) = set of all successors of n
— Start node n,

— Set of final nodes N,

Basic Idea

Forward Dataflow Analysis

* Information about program represented using Analysis propagates values forward through control

values from algebraic structure called lattice flow graph with flow of control
rodiees Niiies vallie e cadh — Each node has a transfer function f
s la 2 @
program point * Input — value at program point before node
gram |

- . * Output — new value at program point after node
* Two flavors of analysis =
F | datafl) I — Values flow from program points after predecessor

brward dataflow analysis 2 p

orward datatiow anaty nodes to program points before successor nodes

Backward dataflow analysis .. .) . .
— At join points, values are combined using a merge
function

Ca hing Definitions

Backward Dataflow Analysis

Partial Orders

* Analysis propagates values backward through control

Set P
flow graph against flow of control

R Partial order < such that Vx,y,zEP
— Each node has a transfer function f .
)) —X=X (reflexive)

* Input — value at program point after node

)) § —x =yandy = x implies x (2
* Output — new value at am point before node

3 ymmetric)

) i) —x=syandy=<zimplies x <z (transitive)
— Values flow from program points before successor) Lord fofi
nodes to program points after predecessor nodes IRUSCH al order to define
— At split points, values are combined using a merge or and lower bounds
function st upper bound
— Canonical Example: Live Variables — Greatest lower bound

Upper Bounds Lower Bounds
» If S C P then « If SC P then
— XEP is an upper bound of S if VyES. y — XEP is a lower bound of S if VyES. x <y

— XEP is the greatest lower bound of S if
 x <y for all upper bounds y of S y = x for all lower bounds y of S

— v - join, least upper bound, lub, supremum, sup — A - meet, greatest lower bound, glb, infimum, inf
* v S s the least upper bound of S * A S is the greatest lower bound of S
* x v y is the least upper bound of {x,y}

* X Ay is the greatest lower bound of {x,y}

Covering Example
* x<yifx =y and x=y « P={000, 001,010,011, 100, 101, 110, 111}

. Cn (standard boolean lattice,
» x is covered by y (y covers x) if

Iso called hypercube)
x bitwise and y
— X <Yy,and
—Xx=z<yimpliesx =z asse Diagra
y img Hasse Diagram
* Conceptually, y covers x if there are no
elements between x and y

» Ify covers x
* Line from y to x

above x in di¢

000

Lattices Lattices

e Ifx A yand x v y exist for all x,yEP, Ifx A yand x v y exist for all x,yEP,
then P is a lattice. then P is a lattice.
 If AS and vS exist forall S C P, If AS and vS exist forall SC P,
. . then P is a complete lattice.
then P is a complete lattice. v,)

All finite latt; I All finite lattices are complete
. attices are co . . .
e | ECES £115 SOl e Example of a lattice that is not complete

Integers |
For an yEL x v y = max(x,y), X A y = min(x,y)
— But v I and A I do not exi

— TU {+%,- } is a comp.

Top and Bottom Connection Between <, A, and v
» The following 3 properties are equivalent:
* Greatest element of P (if it e —x=y
» Least element of P (if it exists) is bottom (L) =%Vy=
XAy=X
1l prove:

x<yimpliesx vy=yandx Ay=X

» Then by transitivity, can obtain
X vy=yimpliesx Ay =X

—XAy=ximpliesx vy=y

Connecting Lemma Proofs Connecting Lemma Proofs

e Proofof x sy impliesx vy=y * Proofofx vy=yimpliesx <y
— X <yimp er bound of {x,y} implies X <y
— Any upper bound z of {X,y} must s e Proofofx A y=X i]np]ics X<V
— So y is least upper bound of {x,y} and x v y
* Proof of x =y implies x A y =X
— X =y implies X is a lower bound of {x,y}.

— Any lower bound z of {X,y} must sati

Lattices as Algebraic Structures

» Have defined v and A in terms of <
* Will now define =< in terms of v and A
— Start with v and A as arbitrary algebraic operations
that satisfy associative, commutative, idempotence,
and absorption laws

— Will define < using v and A
— Will show that < is a partial order

* Intuitive concept of v and A as informat
combination operators (or, and)

Connection Between A and v

e xvy=yifandonlyifx A y=x

* Proof of x v yimpliesx =X Ay

* Proofofx A y=ximpliesy=x vy
y=yV(yAX) by absorption)
=yVv(XAY) by commutativity)

=y VX by assumption)

(
(
(
(

=XVy by commutativity)

Properties of <

 Proof of asymmetry property. Must show that
yandy v x = x implies x
sumption)
mmutativity)
sumption)
* Proof of reflexivity property. Must show that
XVX=X

XV X=X (by idempotence)

Algebraic Properties of Lattices

Assume arbitrary operations v and A such that
—(xvy)vz=xv(yvz) (associativity of v)
—(xAy)Az=xA(yAz) (associativity of A)
—XVy=yVX (commutativity of v)
—XAy=YyAX (commutativity of A)
—XVX=X (idempotence of v)
—XAX=X (idempotence of A)
—XV(EXAY)=X (absorption of v over A)

XA(XVYy)=X (absorption of A over v)

Properties of <

* Definex<yifxvy=y
* Proof of transitive property. Must show that
xvy=yandyvz=zimpliesxvz=z
x v z=xV (yV z) (by assumption)
=(x v y) v z (by associativity)
(by assumption)

(by assumption)

Properties of <

* Induced operation =< agrees with original
definitions of v and A, i.e.,
—X VYy=sup {X,y}

x Ay =inf {x, y}

Proof of x v y = sup {x, y}

» Consider any upper bound u for x an
* Givenx vu=uandy v u=u, must show
Xvy=suie,Xvy vu=u
u=xvu (by assumption)
R S AVAAY)) (by assumption)

=xvy)vu (by associativity)

Chains

* AsetSisachainif VX,yES.ysxorx=<y
* P has no infinite chains if every chain in P is
finite

* P satisfies the ascending chain condition if

v
for all sequences X, = X, < ...there exists n

such thatx, =X, = ...

Transfer Functions

* Transfer function f: P—P for each node in
control flow graph

» fmodels effect of the node on the program
information

Proof of X A y =inf {x, y}

 Consider any lower bound | for x and y.
* Givenx A l=1and y A 1=1, must show
l=sxayie,xAay)al=l
I=xnal (by assumption)
=xA(yal assumption)

=xAay)nal y associativity)

Application to Dataflow Analysis

 Dataflow information will be lattice values
— Transfer functions operate on lattice values
— Solution algorithm will generate increasi
sequence of values at each program
— Ascending chain condition will ensure termination
» Will use v to combine values at control-flow
join points

Transfer Functions

Each dataflow anal problem has a set F of
transfer functions f: P—P
— Identity function iEF
F must be closed under composition:
V{,gE€F. the function h = Ax.f(g(x)) EF
— Each f €F must be monotone:
x <y implies f(x) < f(y)
— Sometimes all f €F a stributive:
f(x vy)=1f(x) v f(y)

Distributivity implies monotonicity

Distributivity Implies Monotonicity

* Proof of distributivity implies monotonicity

e Assume f(x v y) = f(x) v f(y)

e Must show: x v y =y implies f(x) v f(y) = f(y)
fly)=1fxvy) (by assumption)

=1f(x) v f(y) (by distributivity)

Forward Dataflow Analysis
Simulates execution of program forward with
flow of control
For each node n, have
— in, — value at program point before n
— out, — value at pr

— f, — transfer function for n (given in,, computes out,)

— Vn. out,
—Vn=n, in,= v { out, . min pred(n) }
—iny =1

Where I summarizes information at start of program

Worklist Algorithm for Solving
Forward Dataflow Equations

for each n do out, :=f (L)
in,, == I; out,, == £, (1)
worklist := N - { n, }
while worklist = & do
remove a node n from worklist
in, :=v { out, . m in pred(n) }
out, :=f (in,)
if out, changed then
worklist := worklist U succ(n)

Putting Pieces Together

» Forward Dataflow Analysis Framework

» Simulates execution of program forward with
flow of control

Dataflow Equations

» Compiler processes program to obtain a set of
dataflow equations
out, := f (in,)
in, == v { out, . min pred(n) }
Conceptually separates analysis problem from
program

Correctness Argument

Why result satisfies dataflow equations
Whenever process a node n, set out, := f,(in,)
Algorithm ensures that out, = f, (in,)
Whenever out,, changes, put succ(m) on worklist.
o °r any node n € succ(m). It will eventually come
st and algorithm will set

in, := v { out, . min pred(n) }

to ensure that in, = v { out,, . m in pred(n) }

So final solution will satisty dataflow equations

Termination Argument

* Why does algorithm terminate?

» Sequence of values taken on by in, or out,
chain. If values stop increasing, worklist
empties and algorithm terminates.

« Iflattice has ascending chain property,
algorithm terminates
— Algorithm terminates for finite lattices

or latt without ascending chain property, use
widening operator

Reaching Definitions

P = powerset of set of all definitions in program (all
subsets of set of definitions in program)
v = U (order is)
s
I[=in,=1
F = all functions f of the form f(x) = a U (x-b)
is set of definitions that node kills
set of definitions that nod
General pattern for many transfer functions
f(x) = GEN U (x-KILL)

Does Reaching Definitions
Framework Satisfy Properties?

* What about composition?

— Given f;(x) = a; U (x-b,) and f,(x) = a, U (x-b,)

— Must show f;(f,(x)) can be expressed as a U (x - b)

f,(f,(x)) = a, U ((a, U (x-b,)) - b))

Leta=(a; U (a,-b)))andb=b,UDb,
Then f,(f,(x)) =a U (x—b)

Widening Operators

Detect lattice values that may be part of infinitely
ascending chain

Artificially raise value to least upper bound of chain

— Lattice is set of all subsets

— Could be used to collect possible values taken on by
variable during execution of program

— Widening operator might raise all sets of size n or
greater to TOP (likely to be useful for loops)

Does Reaching Definitions

Framework Satisfy Properties?
» C satisfies conditions for =
—xCyandyC zimplies x C z (tra
Cyandy C x implies y = x (asy ry)
— x € x (idempotence)

s transfer function conditions
7)) = Ax.XEF (identity)
1 show f(x U y) = f(x) U f(y) (distributivity)
fx) Uf(ly)=(@aU (x-b)) U(aU (y—Db))
aUx-b)U(y-b)=aU((xUy)-b)
fx Uy)

General Result

All GEN/KILL transfer function frameworks
satisfy
— Identity
Distributivity
Composition

Properties

Available Expressions Concept of Conservatism

P = powerset of set of all expressions in * Reaching definitions use U as join

program (all subsets of set of expressions) — Optimizations must take into account all definitions

v =N (order is ©) that reach along ANY path
1=P

[=in

e Available ex
n0 = Qj

F = all functions f of the form f(x) = a U (x-b) ALL paths

— b is set of expr 1s that node kills (ions must conservatively take all
— a is set of expressions that node generates possible executions into account. Structure of
Another GEN/KILL analysis analysis varies according to way analysis used.

. Worklist Algorithm for Solving
Backward Dataflow Analysis)
» Simulates execution of program backward against Backward Dataflow Equatlons
the flow of control for each n do in, := f (L)
* For each node n, have for each n € N, do out, :=
— in, — value at program point before n worklist := N - N,
— out, — value at program point after n while worklist = & do
f, — transfer function for n (given out,, computes in,) remove a node n from worklist
« Require that solution satisfies out, = v { in,, . m in succ(n) }
in, = f (out,) = f (out,)
- Vn€&Ng,,-out,= v {in, . m in succ(n) } ailifher)
VnEN out, = O / st := worklist U pred(n)

— Where O summarizes information at end of program

final —

Live Variables Meaning of Dataflow Results

P = powerset of set of all variables in program » Concept of program state s for control-flow graphs
(all subsets of set of variables in program) * Program point n where execution located
v = U (order is ©) (n is node that will execute nex

* Values of variables in
1= .
] » Each execution generates a trajectory
0=9 e
- ;S,where each s; EST
F = all functions f of the form f(x) = a U (x-b)

5., generated from s; by executing basic block to
b is set of variables that node kills

* Update variable values

a is set of variables that node reads « Obtain new program point n

Relating States to Analysis Result Sign Analysis Example

» Meaning of analysis results is given by an
arbstracnon tuncn@ AF:ST__)P X * Base Lattice: P = flat lattice on {-,0,+}
» Correctness condition: require that for all states s A
A g TOP
AF(s) = 1n,

where n is the next statement to execute in state s

+ Sign analysis - compute sign of each variable v

BOT
» Actual lattice records a value for each variable

— Example element: [a—+, b—0, c—-]

Interpretation of Lattice Values Operation ® on Lattice

* If value of v in lattice is:
— BOT: no information about sign of v
— -: variable v is negative
— 0: variable v is 0
— +: variable v is positive

— TOP: v may be positive or negative

* What is abstraction function AF?
— AF([xq,....x,]) = i

— Where sign(x) =0 if x =0, + if 3

Transfer Functions Example

e Ifn of the formv=c
— f,(x) = x[v—=+] if ¢ is positive
—f,(x) =x[v—=0]ifcis 0

— f,(x) = x[v—-] if c is negative

e If n of the form v, = v, [a—>+, b—-]
= £,(X) = x[v;—=x[v,] ® x[v3]]
* [=TOP

[a—+, b—TOP]
~— ¥k
o . . c=a*b
(uninitialized variables may have any sign)

[a—+, b—>TOP,c =TOP]

Imprecision In Example
Al tion Imprecision:
[a—1] abstracted as [a—>+]

[a>+]

b=1

[a—+, b—-] [a—+, b—+]

[a—+, b—>TOP]
Control Flow Imy on: c
[b—TOP] summarizes results of all executions. In any
execution state s, AF(s)[b]=TOP

Why Have Imprecision

Make analy ractable
Unbounded sets of values in executio

ally abstracted by finite set of lattice values
Execution may visit unbounded set of states

— Abstracted by computing joins of different paths

Abstraction Function Soundness

¢ Will show

V v. AF(s)[v] = in,[Vv] (n is node for s)

by induction on length of computation that
produced s

» Base case:

V v. in,o[v] = TOP, which implies that
— V v. AF(s)[v] = TOP

General Sources of Imprecision

* Abstraction Impr

ice values (-,0, and +)

— Lattice values less precise than execution values

— Abstraction function /S ¢ nformation
» Control Flow Impr

— One lattice value for all possible control flow paths

Join operation v moves up in lattice to combine values from

different execution paths

Typically <y, then x is more precise than y

Abstraction Function

* AF(s)[v] =signof v

— AF(n,[a—5, b—0, c—-2]) = [a—>+, b—0, c—-]
* Establishes meaning of the analysis results

— If analysis s variable has a given sig

— Always has that sign in actual execution
 Correctness condition:

-V v. AF(s)[v] = in,[v] (n is node for s)

— Reflects possibility of imprecision

Induction Step
Assume V v. AF(s)[v] = in,[v] for computations of length k
Prove for computations of length k+1
Proof:
Given s (state), n (node to execute next), and in

— Find p (the node that just executed), s (the previous state),
and in,

By induction hypothesis V v. A F(sp)[v] = in,[v]
Case analysi orm of n
¢ If n of the form v = ¢, then
s[v] = ¢ and out, [v] = sign(c), so
AF(s)[v] = sign(c) = out, [v] = in,[V]
If x=v, s[x] = s, [x] and out, [x] = in [X], so
AF(s)[x] = AF(s,)[x] = in [x] = out, [x] = in,[x]
* Similar ning if n of the form v, =

10

Augmented Execution States

» Abstraction functions for some analyses require
augmented execution states
— Reaching definitions: states are augmented with
definition that created each value
— Available expressions: states are augmented with
expression for each value

Soundness Proof of Analysis
Algorithm

* Property to prove:
For all paths p ton, f, (1) <in,
 Proof is by induction on length of p
— Uses monotonicity of transfer functions
— Uses following lemma
e Lemma:
Worklist algorithm produces a solution such that
f (in,) = out,

if n € pred(m) then out, < in,

Induction Step Proof

st show i (fi_;(...f,;(f,o(L)) ...)) = in,

— By induction (fi_;(...f,;(f,o(L1)) ...)) = in
 to both sides, by monotonicity we get
fil(fi G B (Fo(L)) -.0)) = fi(ing,)

— By lemma, f(in;) = out,,

— By lemma, out, < in,

— By transitivity, f(f_(...f,,(f,(L1)) ...)) =in,

Meet Over Paths Solution

What solution would be ideal for a forward dataflow

problem?

Consider a path p=n,, n, ..., n,, n to anode n
(note that for all i n; € pred(n,.,))
The solution must take this path into account:
it ()= (0 (L) L) =in,
So the solution must have the property that
vif, (L).pis apathton} <in,
and ideally

.pis apathton} =in,

Proof

* Base case: p is of length 1

— Then p =njand f (1) = L =in,,
¢ Induction step:

— Assume theorem for all paths of length k

— Show for an arbitrary path p of length k+1

Distributivity

* Distributivity preserves precision
* If framework is distributive, then worklist
algorithm produces the meet over paths solution

For all n:

vif, (1) .pis apathton}=in,

11

Lack of Distributivity Example

* Constant Calculator
« Flat Lattice on Integers

TOP

BOT

 Actual lattice records a value for each variable
Example element: [a—3, b—2, c—=5]

Lack of Distributivity Anomaly

[a—2, b—3] [a—3, b—2]

[a—>TOP, b—TOP] | R
= ath Lack of Distributiv
¢ = [a—TOP, b—TOP, c—5] more precise
[a—=TOP, b—TOP, ¢ =TOP]

What is the meet over all paths solution?

Issues

Basically simulating all combinations of values
in all executions
— Exponential blowup

Nontermination because of infin scending chains
Nontermination solution

Use widening operator to eliminate blowup

(can make it work at granularity of variables)

— Loses precision in many cases

Transfer Functions

o Ifn ofthe formv=c¢
— f,(x) =x[v—c]
* If n of the form v, = v,+v;
— £,(x) = x[v;=>x[v,] + x[V5]]
 Lack of distributivity
Consider transfer function f forc =a+b
TOP, b—TOP, c—5]
OP, b—TOP]) =

How to Make Analysis Distributive

» Keep combinations of values on different paths

/\

} {[a—2,b—3], [a—3, b—2]}
c=atb

{[a—2, b—3,c—=5], [a—3, b—2,c—5]}

Multiple Fixed Points

 Dataflow analysis generates least fixed point
* May be multiple fixed points

 Available expressions example

12

Summary

* Formal dataflow analysis framework
— Lattices, partial orders
— Transfer functio
— Dataflow equations
» Connection with program
— Abstraction function AF
— For any state s and program point n, AF(s) = in,

— Meet over all paths solutions, distributivity

13

