Lecture 10: Introduction to
Dataflow Analysis

Copy Propagation Summary

¢ Forward Propagation within basic block
e Maps

— tmp2var: tells which variable to use instead of a given temporary
variable

— var2set: inverse of tmp to var. tells which temps are mapped to a
given variable by tmp to var

e Algorithm
— For each statement

« If any tmp variable in the RHS is in tmp2var replace it with var
o If LHS var in var2set remove the variables in the set in tmp2var

Summary So far... what's next

e Till now: How to analyze and transform
within a basic block

¢ Next: How to do it for the entire procedure

Value Numbering Summary

¢ Forward symbolic execution of basic block
e Maps
— Var2Val — symbolic value for each variable
— Exp2Val — value of each evaluated expression
— Exp2Tmp — tmp that holds value of each evaluated expression
o Algorithm
— For each statement
o If variables in RHS not in the Var2Val add it with a new value
o If RHS expression in Exp2Tmp use that Temp
o If not add RHS expression to Exp2Val with new value
¢ Copy the value into a new tmp and add to EXp2Tmp

Dead Code Elimination Summary

¢ Backward Propagation within basic block
e Map

— A set of variables that are needed later in computation
¢ Algorithm
— Every statement encountered
o If LHS is not in the set, remove the statement
e Else put all the variables in the RHS into the set

Outline

¢ Reaching Definitions
e Available Expressions

e Liveness

Reaching Definitions

e Concept of definition and use
—a =Xty
—is a definition of a
—isause of xand y

e A definition reaches a use if
— value written by definition
—{may)be read by use

Reaching Definitions and
Constant Propagation
e Is a use of a variable a constant?
— Check all reaching definitions
— If all assign variable to same constant
—Then use is in fact a constant

¢ Can replace variable with constant

Constant Propagation
Transform
Yes!

On all reaching
definitions

return s

Reaching Definitions

Is a Constant in s = s+a*b?

Yes!

On all reaching
definitions
a=4

Is b Constant in s = s+a*b?

No!

One reaching
definition with
b=1
One reaching
definition with
b=2

Splitting ' Splitting

Preserves Information Lost At Merges Preserves Information Lost At Merges

return s §= S return s

Computing Reaching 0000000
Definitions :

e Compute with sets of definitions
— represent sets using bit vectors
— each definition has a position in bit vector
¢ At each basic block, compute
— definitions that reach start of block
— definitions that reach end of block
¢ Do computation by simulating execution of
program until reach fixed point

Formalizing Analysis Dataflow Equations

Each basic block has IN[b] = OUT[b1] U ... U OUT[bn]

— IN - set of definitions that reach beginning of block — where b1, ..., bn are predecessors of b in CFG
— OUT - set of definitions that reach end of block OUT[b] = (IN[b] - KILL[b]) U GEN[b]

— GEN - set of definitions generated in block IN[entry] = 0000000

— KILL - set of definitions killed in block . "
. Result: system of equations
GEN[s =s + a*b; i =i+ 1;] = 0000011

KILL[s =s + a*b; i =i + 1;] = 1010000

Compiler scans each basic block to derive GEN
and KILL sets

Solving Equations

Use fixed point algorithm

Initialize with solution of OUT[b] = 0000000
Repeatedly apply equations

— IN[b] = OUT[b1] U ... U OUT[bn]

— OUT[b] = (IN[b] - KILL[b]) U GEN[b]

Until reach fixed point

Until equation application has no further effect

Use a worklist to track which equation
applications may have a further effect

Questions

Does the algorithm halt?

— yes, because transfer function is monotonic
— if increase IN, increase OUT

— in limit, all bits are 1

If bit is 0, does the corresponding definition ever
reach basic block?

If bit is 1, is does the corresponding definition
always reach the basic block?

Outline

e Reaching Definitions
e Available Expressions

¢ Liveness

Reaching Definitions Algorithm

for all nodes nin N
OUT[n] = emptyset;
IN[Entry] = emptyset;
OUT[Entry] = GEN[Entry];
Changed = N - { Entry };

while (Changed != emptyset)
choose a node n in Changed;
Changed = Changed - { n };

IN[n] = emptyset;

for all nodes p in predecessors(n)
IN[n] = IN[n] U OUT[p];

OUT[n] = GEN[n] U (IN[n] - KILL[n]);

if (OUT[n] changed)

for all nodes s in successors(n)
Changed = Changed U { s };

0000000

1111101

Available Expressions

e An expression x+y is available at a point p if
— every path from the initial node to p must evaluate x
+y before reaching p,
— and there are no assignments to x or y after the
evaluation but before p.
¢ Available Expression information can be used to
do global (across basic blocks) CSE
o If expression is available at use, no need to
reevaluate it

Example: Available Expression

Is the Expression Available?

Is the Expression Available?

Is the Expression Available?

b=a+d
h=c+f

Is the Expression Available?

Is the Expression Available?

j=atb+c+d

Is the Expression Available?

Use of Available Expressions

Use of Available Expressions

Is the Expression Available?

j=atb+c+d

Use of Available Expressions

Use of Available Expressions

j=atb+c+d

Use of Available Expressions Use of Available Expressions

Use of Available Expressions

Use of Available Expressions

Computing Available 0000
Expressions

i i i Expressions
Represent sets of expressions using bit vectors
Each expression corresponds to a bit

Run dataflow algorithm similar to reaching
definitions

Big difference

— definition reaches a basic block if it comes from(ANY,
predecessor in CFG

— expression is available at a basic block only if it is
available from(ALL jpredecessors in CFG

1000

0000

Global CSE Transform

Expressions

se same temp must use same temp
for CSE in all blocks for CSE in all blocks

Formalizing Analysis Dataflow Equations
Each basic block has
— IN - set of expressions available at start of block IN[b] = OUT[b1] M ... N OUT[bn]
— OUT - set of expressions available at end of block — where b1, ..., bn are predecessors of b in CFG
— GEN - set of expressions computed in block OUT[b] = (IN[b] - KILL[b]) U GEN[b]
— KILL - set of expressions killed in in block IN[entry] = 0000
GEN[x = z; b = x+y] = 1000 Result: system of equations
KILL[x = z; b = x+y] = 1001
Compiler scans each basic block to derive GEN
and KILL sets

Solving Equations Available Expressions Algorithm

Use fixed point algorithm for all nodes n in N
OUT[n] = E;

IN[entry] E00[0]0] IN[Entry] = empt’yset;
Initialize OUT[b] = 1111 Chongd -ty

Changed = N - { Entry };
Repeatedly apply eCluatloms while (Changed != emptyset)
— IN[b] = OUT[b1] N ... N OUT[bn] C_T : iﬂtjiﬂ de rgt“d;
— OUTI[b] = (IN[b] - KILL[b]) U GEN[b] craneea sty
Use a worklist algorithm to reach fixed point)=

for all nodes p in predecessors(n)
IN[n] = IN[n] N OUT[pJ;

OUT[n] = GEN[n] U (IN[n] - KILL[n]);

if (OUT[n] changed)
for all nodes s in successors(n)

Changed = Change

Questions General Correctness

Concept in actual program execution
¢ Does algorithm always halt? ~ Reaching definition: definition D, execution E at program point P
— Available expression: expression X, execution E at program point P
Analysis reasons about all possible executions
« If expression is available in some execution, is it 7o Gl GERNRE E 6l EgRli i)
o o A — if a definition D reaches P in E
always marked as available in ana|y5|5? — then D is in the set of reaching definitions at P from analysis
Other way around
))))) — if D is not in the set of reaching definitions at P from analysis
o If expression is not available in some execution, — then D never reaches P in any execution E
can it be marked as available in analysis? For all executions E at program point P,
— if an expression X is in set of available expressions at P from analysis
— then X is available in E at P
Concept of being conservative

Duality In Two Algorithms Outline

Reaching definitions

— Confluence operation is set union
— OUT[b] initialized to empty set e Available Expressions
Available expressions

— Confluence operation is set intersection

— OUT[b] initialized to set of available expressions
General framework for dataflow algorithms.

Build parameterized dataflow analyzer once, use
for all dataflow problems

e Reaching Definitions

¢ Liveness

What Use is Liveness

Information?

A variable v is live at point p if ¢ Register allocation.
— v is used along some path starting at p, and — If a variable is dead, can reassign its register
— no definition of v along the path before the use. ¢ Dead code elimination.
When is a variable v dead at point p? — Eliminate assignments to variables not read later.
— No use of v on any path from p to exit node, or — But must not eliminate last assignment to variable
— If all paths from p redefine v before using v. (such as instance variable) visible outside CFG.
— Can eliminate other dead assignments.
— Handle by making all externally visible variables live on
exit from CFG

Liveness Analysis

Conceptual Idea of Analysis Liveness Example

¢ Simulate execution Assume a,b,c visible
o But start from exit and go backwards in CFG outside method
o Compute liveness information from end to So are live on exit
beginning of basic blocks Assume X,Y,z,t not
visible
Represent Liveness
Using Bit Vector
) 1100100
— order is abcxyzt abcxyzt

Dead Code Elimination Formalizing Analysis

.] Each basic block has

ARG EE e — IN - set of variables live at start of block
outside method variat 'V?a start or bloc

i . — OUT - set of variables live at end of block
So are live on exit X — USE - set of variables with upwards exposed uses in block
Assume x,y,z,t not 1100 — DEF - set of variables defined in block
visible) USE[x = z; x = x+1;] ={ z } (x not in USE)
Represent Liveness . DEF[x = z; x = x+1;y = 1;] = {X, v}

Using Bit Vector > . . .
9 . Compiler scans each basic block to derive USE and
— order is abcxyzt)01(
s DEF sets

Algorithm Similar to Other Dataflow
for all nodes nin N - { Exit } Algorithms

IN[n] = emptyset;

OUT[Exit] = : .
N uset e Backwards analysis, not forwards

Changed = N - { Exit }; . .
enoe X « Still have transfer functions
while (Changed != emptyset) o
o Still have confluence operators

choose a node n in Changed;

Changed = Changed - { n }; .
e Can generalize framework to work for both

OUT[n] = emptyset;

forwards and backwards analyses

for all nodes s in successors(n)
OUT[Nn] = OUT[n] U IN[p];

IN[n] = use[n] U (out[n] - def[n]);
if (IN[n] changed)

for all nodes p in predecessors(n)
Changed = Changed U { p };

Comparison

Reaching Definitions Available Expressions Liveness

nin N inN

GEN[Entry] GEN[Entry];

N - { Entry }

KILL[n]); IN[n]
i (OUTIn] if (IN

Chang:

Comparison

Reaching Definitions Liveness

for all
IN[n]

] - KILL[n]);

Pessimistic vs. Optimistic
Analyses

Available expressions is optimistic

(for common sub-expression elimination)

— Assume expressions are available at start of analysis

— Analysis eliminates all that are not available

— Cannot stop analysis early and use current result
Live variables is pessimistic (for dead code elimination)
— Assume all variables are live at start of analysis

— Analysis finds variables that are dead

— Can stop analysis early and use current result
Dataflow setup same for both analyses
Optimism/pessimism depends on intended use

Comparison

Reaching Definitions

IN[Ent

UT[p]

OUT[n] = GEN[n] U (IN[n] - KILL[n]);

Analysis Information Inside

Basic Blocks
e One detail:

— Given dataflow information at IN and OUT of node
— Also need to compute information at each statement of

basic block

— Simple propagation algorithm usually works fine

— Can be viewed as restricted case of dataflow analysis

Summary

¢ Basic Blocks and Basic Block Optimizations
— Copy and constant propagation
— Common sub-expression elimination
— Dead code elimination

¢ Dataflow Analysis
— Control flow graph
— IN[b], OUT[b], transfer functions, join points

¢ Paired analyses and transformations
— Reaching definitions/constant propagation
— Available expressions/common sub-expression elimination
— Liveness analysis/Dead code elimination

e Stacked analysis and transformations work together

Available Expressions

11

