
1

Lecture 9: Introduction to
Program Analysis and

Optimization

Outline

•  Introduction

•  Basic Blocks

•  Common Subexpression Elimination

•  Copy Propagation

•  Dead Code Elimination

•  Algebraic Simplification

•  Summary

Program Analysis

•  Compile-time reasoning about run-time behavior
of program
–  Can discover things that are always true:

•  “x is always 1 in the statement y = x + z”
•  “the pointer p always points into array a”
•  “the statement return 5 can never execute”

–  Can infer things that are likely to be true:
•  “the reference r usually refers to an object of class C”
•  “the statement a = b + c appears to execute more frequently

than the statement x = y + z”

–  Distinction between data and control-flow properties

Transformations

•  Use analysis results to transform program
•  Overall goal: improve some aspect of program
•  Traditional goals:

–  Reduce number of executed instructions
–  Reduce overall code size

•  Other goals emerge as space becomes more complex
–  Reduce number of cycles

•  Use vector or DSP instructions
•  Improve instruction or data cache hit rate

–  Reduce power consumption
–  Reduce memory usage

Outline

•  Introduction

•  Basic Blocks

•  Common Subexpression Elimination

•  Copy Propagation

•  Dead Code Elimination

•  Algebraic Simplification

•  Summary

Control Flow Graph

•  Nodes Represent Computation
– Each Node is a Basic Block
– Basic Block is a Sequence of Instructions with

• No Branches Out Of Middle of Basic Block
• No Branches Into Middle of Basic Block
• Basic Blocks should be maximal

– Execution of basic block starts with first
instruction

–  Includes all instructions in basic block

•  Edges Represent Control Flow

2

Control Flow Graph

into add(n, k) {
 s = 0; a = 4; i = 0;
 if (k == 0)
 b = 1;
 else
 b = 2;
 while (i < n) {
 s = s + a*b;
 i = i + 1;
 }
 return s;

}

s = 0;
a = 4;
i = 0;

k == 0

b = 1; b = 2;

i < n

s = s + a*b;
i = i + 1;

return s;

Basic Block Construction

s = 0;

a = 4;

•  Start with instruction control-flow graph
•  Visit all edges in graph
•  Merge adjacent nodes if

– Only one edge from first node
– Only one edge into second node

s = 0;
a = 4;

s = 0;

a = 4;

i = 0;

k == 0

b = 1; b = 2;

i < n

s = s + a*b;

i = i + 1;

return s;

s = 0;
a = 4;

s = 0;

a = 4;

i = 0;

k == 0

b = 1; b = 2;

i < n

s = s + a*b;

i = i + 1;

return s;

s = 0;
a = 4;
i = 0;

s = 0;

a = 4;

i = 0;

k == 0

b = 1; b = 2;

i < n

s = s + a*b;

i = i + 1;

return s;

s = 0;
a = 4;
i = 0;

k == 0

s = 0;

a = 4;

i = 0;

k == 0

b = 1; b = 2;

i < n

s = s + a*b;

i = i + 1;

return s;

s = 0;
a = 4;
i = 0;

k == 0

b = 2;

3

s = 0;

a = 4;

i = 0;

k == 0

b = 1; b = 2;

i < n

s = s + a*b;

i = i + 1;

return s;

s = 0;
a = 4;
i = 0;

k == 0

b = 2;

i < n

s = 0;

a = 4;

i = 0;

k == 0

b = 1; b = 2;

i < n

s = s + a*b;

i = i + 1;

return s;

s = 0;
a = 4;
i = 0;

k == 0

b = 2;

i < n

s = s + a*b;

s = 0;

a = 4;

i = 0;

k == 0

b = 1; b = 2;

i < n

s = s + a*b;

i = i + 1;

return s;

s = 0;
a = 4;
i = 0;

k == 0

b = 2;

i < n

s = s + a*b;
i = i + 1;

s = 0;

a = 4;

i = 0;

k == 0

b = 1; b = 2;

i < n

s = s + a*b;

i = i + 1;

return s;

s = 0;
a = 4;
i = 0;

k == 0

b = 2;

i < n

s = s + a*b;
i = i + 1;

s = 0;

a = 4;

i = 0;

k == 0

b = 1; b = 2;

i < n

s = s + a*b;

i = i + 1;

return s;

s = 0;
a = 4;
i = 0;

k == 0

b = 2;

i < n

s = s + a*b;
i = i + 1; return s;

s = 0;

a = 4;

i = 0;

k == 0

b = 1; b = 2;

i < n

s = s + a*b;

i = i + 1;

return s;

s = 0;
a = 4;
i = 0;

k == 0

b = 1; b = 2;

i < n

s = s + a*b;
i = i + 1; return s;

4

s = 0;

a = 4;

i = 0;

k == 0

b = 1; b = 2;

i < n

s = s + a*b;

i = i + 1;

return s;

s = 0;
a = 4;
i = 0;

k == 0

b = 1; b = 2;

i < n

s = s + a*b;
i = i + 1; return s;

s = 0;

a = 4;

i = 0;

k == 0

b = 1; b = 2;

i < n

s = s + a*b;

i = i + 1;

return s;

s = 0;
a = 4;
i = 0;

k == 0

b = 1; b = 2;

i < n

s = s + a*b;
i = i + 1; return s;

Program Points, Split and Join
Points

•  One program point before and after each
statement in program

•  Split point has multiple successors – conditional
branch statements only split points

•  Merge point has multiple predecessors
•  Each basic block

– Either starts with a merge point or its
predecessor ends with a split point

– Either ends with a split point or its successor
starts with a merge point

Basic Block Optimizations

•  Common Sub-
Expression Elimination
–  a=(x+y)+z; b=x+y;
–  t=x+y; a=t+z; b=t;

•  Constant Propagation
–  x=5; b=x+y;
–  x=5; b=5+y;

•  Algebraic Identities
–  a=x*1;
–  a=x;

•  Copy Propagation
–  a=x+y; b=a; c=b+z;
–  a=x+y; b=a; c=a+z;

•  Dead Code Elimination
–  a=x+y; b=a; b=a+z;
–  a=x+y; b=a+z

•  Strength Reduction
–  t=i*4;
–  t=i<<2;

Basic Block Analysis Approach
•  Assume normalized basic block - all statements

are of the form
–  var = var op var (where op is a binary operator)
–  var = op var (where op is a unary operator)
–  var = var

•  Simulate a symbolic execution of basic block
– Reason about values of variables (or other

aspects of computation)
– Derive property of interest

Two Kinds of Variables

•  Temporaries Introduced By Compiler
– Transfer values only within basic block
–  Introduced as part of instruction flattening
–  Introduced by optimizations/transformations
– Typically assigned to only once

•  Program Variables
– Declared in original program
– May be assigned to multiple times
– May transfer values between basic blocks

5

Outline

•  Introduction

•  Basic Blocks

•  Common Subexpression Elimination

•  Copy Propagation

•  Dead Code Elimination

•  Algebraic Simplification

•  Summary

Value Numbering
•  Reason about values of variables and expressions

in the program
–  Simulate execution of basic block
–  Assign virtual value to each variable and expression

•  Discovered property: which variables and expressions
have the same value

•  Standard use:
–  Common subexpression elimination
–  Typically combined with transformation that

• Saves computed values in temporaries
• Replaces expressions with temporaries when value

of expression previously computed

b → v5 b → v6

a = x+y
b = a+z
b = b+y
c = a+z

a = x+y
t1 = a
b = a+z
t2 = b
b = b+y
t3 = b

x → v1
y → v2
a → v3
z → v4

c → v5

Original Basic
Block

New Basic
Block

Var to Val

v1+v2 → v3
v3+v4 → v5

Exp to Val
v1+v2 → t1
v3+v4 → t2

Exp to Tmp

c = t2

v5+v2 → v6 v5+v2 → t3

Value Numbering Summary

•  Forward symbolic execution of basic block
•  Each new value assigned to temporary

–  a=x+y; becomes a=x+y; t=a;
–  Temporary preserves value for use later in program even

if original variable rewritten
• a=x+y; a=a+z; b=x+y becomes
• a=x+y; t=a; a=a+z; b=t;

•  Maps
–  Var to Val – specifies symbolic value for each variable
–  Exp to Val – specifies value of each evaluated expression
–  Exp to Tmp – specifies tmp that holds value of each

evaluated expression

Map Usage
•  Var to Val

–  Used to compute symbolic value of y and z when
processing statement of form x = y + z

•  Exp to Tmp
–  Used to determine which tmp to use if value(y) +

value(z) previously computed when processing
statement of form x = y + z

•  Exp to Val
–  Used to update Var to Val when

• processing statement of the form x = y + z, and
•  value(y) + value(z) previously computed

Interesting Properties

•  Finds common subexpressions even if they use
different variables in expressions
– y=a+b; x=b; z=a+x becomes
– y=a+b; t=y; x=b; z=t
– Why? Because computes with symbolic values

•  Finds common subexpressions even if variable
that originally held the value was overwritten
– y=a+b; y=1; z=a+b becomes
– y=a+b; t=y; y=1; z=t
– Why? Because saves values away in

temporaries

6

One More Interesting Property

•  Flattening and CSE combine to capture partial and
arbitrarily complex common subexpressions

 w=(a+b)+c; x=b; y=(a+x)+c; z=a+b;

–  After flattening:
 t1=a+b; w=t1+c; x=b; t2=a+x; y=t2+c; z=a+b;

–  CSE algorithm notices that
•  t1+c and t2+c compute same value
•  In the statement z = a+b, a+b has already been computed so

generated code can reuse the result

 t1=a+b; w=t1+c; t3=w; x=b; t2=t1; y=t3; z=t1;

Problems I

•  Algorithm has a temporary for each new value
–  a=x+y; t1=a;

•  Introduces
–  lots of temporaries
–  lots of copy statements to temporaries

•  In many cases, temporaries and copy statements
are unnecessary

•  So we eliminate them with copy propagation and
dead code elimination

Problems II

•  Expressions have to be identical
–  a=x+y+z; b=y+z+x; c=x*2+y+2*z–(x+z)

•  We use canonicalization
•  We use algebraic simplification

Copy Propagation

•  Once again, simulate execution of program
•  If can, use original variable instead of temporary

–  a=x+y; b=x+y;
–  After CSE becomes a=x+y; t=a; b=t;
–  After CP becomes a=x+y; t=a; b=a;
–  After DCE becomes a=x+y; b=a;

•  Key idea:
–  determine when original variable is NOT overwritten

between its assignment statement and the use of the
computed value

–  If not overwritten, use original variable

Outline

•  Introduction

•  Basic Blocks

•  Common Subexpression Elimination

•  Copy Propagation

•  Dead Code Elimination

•  Algebraic Simplification

•  Summary

Copy Propagation Maps

•  Maintain two maps
–  tmp to var: tells which variable to use instead

of a given temporary variable
– var to set: inverse of tmp to var. tells which

temps are mapped to a given variable by tmp
to var

7

Copy Propagation Example

•  Original
a = x+y
b = a+z
c = x+y
a = b

•  After CSE
a = x+y
t1 = a
b = a+z
t2 = b
c = t1
a = b

•  After CSE and Copy
Propagation
a = x+y
t1 = a
b = a+z
t2 = b
c = a
a = b

Copy Propagation Example

a = x+y
t1 = a

Basic Block
After CSE

a = x+y
t1 = a

Basic Block After
CSE and Copy Prop

tmp to var var to set
t1 → a a →{t1}

Copy Propagation Example

a = x+y
t1 = a
b = a+z
t2 = b

Basic Block
After CSE

a = x+y
t1 = a
b = a+z
t2 = b

Basic Block After
CSE and Copy Prop

tmp to var var to set
t1 → a
t2 → b

a →{t1}
b →{t2}

Copy Propagation Example

a = x+y
t1 = a
b = a+z
t2 = b
c = t1

Basic Block
After CSE

a = x+y
t1 = a
b = a+z
t2 = b

Basic Block After
CSE and Copy Prop

tmp to var var to set
t1 → a
t2 → b

a →{t1}
b →{t2}

Copy Propagation Example

a = x+y
t1 = a
b = a+z
t2 = b
c = t1

Basic Block
After CSE

a = x+y
t1 = a
b = a+z
t2 = b
c = a

Basic Block After
CSE and Copy Prop

tmp to var var to set
t1 → a
t2 → b

a →{t1}
b →{t2}

Copy Propagation Example

a = x+y
t1 = a
b = a+z
t2 = b
c = t1
a = b

Basic Block
After CSE

a = x+y
t1 = a
b = a+z
t2 = b
c = a
a = b

Basic Block After
CSE and Copy Prop

tmp to var var to set
t1 → a
t2 → b

a →{t1}
b →{t2}

8

Copy Propagation Example

a = x+y
t1 = a
b = a+z
t2 = b
c = t1
a = b

Basic Block
After CSE

a = x+y
t1 = a
b = a+z
t2 = b
c = a
a = b

Basic Block After
CSE and Copy Prop

tmp to var var to set
t1 → t1
t2 → b

a →{}
b →{t2}

Outline

•  Introduction

•  Basic Blocks

•  Common Subexpression Elimination

•  Copy Propagation

•  Dead Code Elimination

•  Algebraic Simplification

•  Summary

Dead Code Elimination

•  Copy propagation keeps all temps around
•  May be temps that are never read
•  Dead Code Elimination removes them

a = x+y
t1 = a
b = a+z
t2 = b
c = a
a = b

a = x+y
b = a+z
c = a
a = b

Basic Block After
CSE and CP

Basic Block After
CSE, CP and DCE

Dead Code Elimination

•  Basic Idea
– Process Code In Reverse Execution Order
– Maintain a set of variables that are needed

later in computation
–  If encounter an assignment to a temporary

that is not needed, remove assignment

a = x+y
t1 = a
b = a+z
t2 = b
c = a
a = b

Basic Block After
CSE and Copy Prop

Needed Set
{b}

a = x+y
t1 = a
b = a+z
t2 = b
c = a
a = b

Basic Block After
CSE and Copy Prop

Needed Set
{a, b}

9

a = x+y
t1 = a
b = a+z
t2 = b
c = a
a = b

Basic Block After
CSE and Copy Prop

Needed Set
{a, b}

a = x+y
t1 = a
b = a+z

c = a
a = b

Basic Block After
CSE and Copy Prop

Needed Set
{a, b}

a = x+y
t1 = a
b = a+z

c = a
a = b

Basic Block After
CSE and Copy Prop

Needed Set
{a, z}

a = x+y
t1 = a
b = a+z

c = a
a = b

Basic Block After
CSE and Copy Prop

Needed Set
{a, z}

a = x+y

b = a+z

c = a
a = b

Basic Block After
CSE and Copy Prop

Needed Set
{a, z}

a = x+y

b = a+z

c = a
a = b

Basic Block After , CSE Copy Propagation,
and Dead Code Elimination

Needed Set
{x, y, z}

10

a = x+y

b = a+z

c = a
a = b

Basic Block After , CSE Copy Propagation,
and Dead Code Elimination

Needed Set
{x, y, z}

Outline

•  Introduction

•  Basic Blocks

•  Common Subexpression Elimination

•  Copy Propagation

•  Dead Code Elimination

•  Algebraic Simplification

•  Summary

Algebraic Simplification

•  Apply our knowledge from algebra, number
theory etc. to simplify expressions

Algebraic Simplification

•  Apply our knowledge from algebra, number
theory etc. to simplify expressions

•  Example
– a + 0 ⇒ a
– a * 1 ⇒ a
– a / 1 ⇒ a
– a * 0 ⇒ 0
– 0 - a ⇒ -a
– a + (-b) ⇒ a - b
–  -(-a) ⇒ a

Algebraic Simplification

•  Apply our knowledge from algebra, number
theory etc. to simplify expressions

•  Example
– a ∧ true ⇒ a
– a ∧ false ⇒ false
– a ∨ true ⇒ true
– a ∨ false ⇒ a

Algebraic Simplification

•  Apply our knowledge from algebra, number
theory etc. to simplify expressions

•  Example
– a ^ 2 ⇒ a*a
– a * 2 ⇒ a + a
– a * 8 ⇒ a << 3

11

Opportunities for
Algebraic Simplification

•  In the code
–  Programmers are lazy to simplify expressions
–  Programs are more readable with full expressions

•  After compiler expansion
–  Example: Array read A[8][12] will get expanded to
–  *(Abase + 4*(12 + 8*256)) which can be simplified

•  After other optimizations

Usefulness of Algebraic Simplification

•  Reduces the number of instructions
•  Uses less expensive instructions
•  Enable other optimizations

Implementation

•  Not a data-flow optimization!
•  Find candidates that matches the

simplification rules and simplify the
expression trees

•  Candidates may not be obvious

Implementation

•  Not a data-flow optimization!
•  Find candidates that matches the

simplification rules and simplify the
expression trees

•  Candidates may not be obvious
– Example

a + b - a
a -

b a

+

Use knowledge about operators

•  Commutative operators
–  a op b = b op a
– 

•  Associative operators
–  (a op b) op c = b op (a op c)

Canonical Format

•  Put expression trees into a canonical
format
– Sum of multiplicands
– Variables/terms in a canonical order
– Example

(a+3)*(a+8)*4 ⇒ 4*a*a+44*a+96

– Section 12.3.1 of whale book talks about this

12

Effects on the Numerical Stability

•  Some algebraic simplifications may produce
incorrect results

Effects on the Numerical Stability

•  Some algebraic simplifications may produce
incorrect results

•  Example
–  (a / b)*0 + c

Effects on the Numerical Stability

•  Some algebraic simplifications may produce
incorrect results

•  Example
–  (a / b)*0 + c
– we can simplify this to c

Effects on the Numerical Stability

•  Some algebraic simplifications may produce
incorrect results

•  Example
–  (a / b)*0 + c
– we can simplify this to c
– But what about when b = 0

should be a exception, but we’ll get a result!

Outline

•  Introduction

•  Basic Blocks

•  Common Subexpression Elimination

•  Copy Propagation

•  Dead Code Elimination

•  Algebraic Simplification

•  Summary

Interesting Properties

•  Analysis and Transformation Algorithms
Symbolically Simulate Execution of Program
–  CSE and Copy Propagation go forward
–  Dead Code Elimination goes backwards

•  Transformations stacked
–  Group of basic transformations work together
–  Often, one transformation creates inefficient code that

is cleaned up by following transformations
–  Transformations can be useful even if original code

may not benefit from transformation

13

Other Basic Block Transformations

•  Constant Propagation
•  Strength Reduction

– a<<2 = a*4; a+a+a = 3*a;

•  Do these in unified transformation
framework, not in earlier or later phases

Summary

•  Basic block analyses and transformations
•  Symbolically simulate execution of program

–  Forward (CSE, copy prop, constant prop)
–  Backward (Dead code elimination)

•  Stacked groups of analyses and transformations that work
together
–  CSE introduces excess temporaries and copy statements
–  Copy propagation often eliminates need to keep temporary

variables around
–  Dead code elimination removes useless code

•  Similar in spirit to many analyses and transformations that
operate across basic blocks

