
MIT 6.035
Top-Down Parsing

Martin Rinard
Laboratory for Computer Science

Massachusetts Institute of Technology

Orientation

•  Language specification
•  Lexical structure – regular expressions
•  Syntactic structure – grammar

•  This Lecture - recursive descent parsers
•  Code parser as set of mutually recursive procedures
•  Structure of program matches structure of grammar

Starting Point

•  Assume lexical analysis has produced a sequence
of tokens
•  Each token has a type and value
•  Types correspond to terminals
•  Values to contents of token read in

•  Examples
•  Int 549 – integer token with value 549 read in
•  if - if keyword, no need for a value
•  AddOp + - add operator, value +

Basic Approach

•  Start with Start symbol
•  Build a leftmost derivation

•  If leftmost symbol is nonterminal, choose a
production and apply it

•  If leftmost symbol is terminal, match against
input

•  If all terminals match, have found a parse!
•  Key: find correct productions for nonterminals

Graphical Illustration of Leftmost
Derivation

Apply Production
Here

NT1 T1 T2 T3 NT2 NT3

Not Here

Sentential Form

Grammar for Parsing Example

Start → Expr
Expr → Expr + Term
Expr → Expr - Term
Expr → Term
Term → Term * Int
Term → Term / Int
Term → Int

•  Set of tokens is
 { +, -, *, /, Int }, where

Int = [0-9][0-9]*
•  For convenience, may represent

each Int n token by n

Start
Parse
Tree

Sentential Form

Remaining Input

2-2*2

Start

Current Position in Parse Tree

Parsing Example

Applied Production

Start → Expr

Start
Parse
Tree

Sentential Form

Remaining Input

2-2*2

Expr

Expr

Current Position in Parse Tree

Parsing Example

Applied Production

Expr → Expr - Term

Parse
Tree

Sentential Form

Remaining Input

2-2*2

Expr - Term

Start

Expr

Term Expr -

Parsing Example

Expr → Expr + Term
Expr → Expr - Term
Expr → Term

Applied Production

Expr → Term

Start
Parse
Tree

Sentential Form

Remaining Input

2-2*2

Term - Term

Expr

Term Expr -

Term

Parsing Example

Expr → Expr + Term
Expr → Expr - Term
Expr → Term

Applied Production

Term → Int

Start
Parse
Tree

Sentential Form

Remaining Input

2-2*2
Expr

Term Expr -

Term

Int

Int - Term

Parsing Example

Start
Parse
Tree

Sentential Form

Remaining Input

2-2*2

2 - Term

Expr

Term Expr -

Term

Match
Input
Token!

Int 2

Parsing Example

Start
Parse
Tree

Sentential Form

Remaining Input

-2*2

2 - Term

Expr

Term Expr -

Term

Match
Input
Token!

Int 2

Parsing Example

Start
Parse
Tree

Sentential Form

Remaining Input

2*2

2 - Term

Expr

Term Expr -

Term

Match
Input
Token!

Int 2

Parsing Example

Applied Production

Term → Term * Int

Start
Parse
Tree

Sentential Form

Remaining Input

2*2

2 - Term*Int

Expr

Term Expr -

Term
Term Int *

Int 2

Parsing Example

Applied Production

Term → Int

Start
Parse
Tree

Sentential Form

Remaining Input

2*2

2 - Int * Int

Expr

Term Expr -

Term
Term Int *

Int 2
Int

Parsing Example

Match
Input
Token!

Start
Parse
Tree

Sentential Form

Remaining Input

2*2

2 - 2* Int

Expr

Term Expr -

Term
Term Int *

Int 2
Int 2

Parsing Example

Match
Input
Token!

Start
Parse
Tree

Sentential Form

Remaining Input

*2

2 - 2* Int

Expr

Term Expr -

Term
Term Int *

Int 2
Int 2

Parsing Example

Match
Input
Token!

Start
Parse
Tree

Sentential Form

Remaining Input

2

2 - 2* Int

Expr

Term Expr -

Term
Term Int *

Int 2
Int 2

Parsing Example

Parsing Example

Start
Parse
Tree

Sentential Form

Remaining Input

2

2 - 2*2

Expr

Term Expr -

Term
Term Int 2 *

Int 2
Int 2

Parse
Complete!

Summary

•  Three Actions (Mechanisms)
•  Apply production to expand current

nonterminal in parse tree
•  Match current terminal (consuming input)
•  Accept the parse as correct

•  Parser generates preorder traversal of parse tree
•  visit parents before children
•  visit siblings from left to right

Policy Problem

•  Which production to use for each nonterminal?
•  Classical Separation of Policy and Mechanism
•  One Approach: Backtracking

•  Treat it as a search problem
•  At each choice point, try next alternative
•  If it is clear that current try fails, go back to

previous choice and try something different
•  General technique for searching
•  Used a lot in classical AI and natural language

processing (parsing, speech recognition)

Backtracking Example

Start
Parse
Tree

Sentential Form

Remaining Input

2-2*2

Start

Applied Production

Start → Expr

Backtracking Example

Start
Parse
Tree

Sentential Form

Remaining Input

2-2*2

Expr

Expr

Applied Production

Expr → Expr + Term

Backtracking Example

Start
Parse
Tree

Sentential Form

Remaining Input

2-2*2

Expr + Term

Expr

Term Expr +

Applied Production

Expr → Term

Backtracking Example

Start
Parse
Tree

Sentential Form

Remaining Input

2-2*2

Term + Term

Expr

Term Expr +

Term

Applied Production

Term → Int

Backtracking Example

Start
Parse
Tree

Sentential Form

Remaining Input

2-2*2

Int + Term

Expr

Term Expr +

Term

Int

Match
Input

Token!

Applied Production

Term → Int

Backtracking Example

Start
Parse
Tree

Sentential Form

Remaining Input

-2*2

2 - Term

Expr

Term Expr +

Term

Int 2

Can�t
Match
Input

Token!

Applied Production

Start → Expr

Backtracking Example

Start
Parse
Tree

Sentential Form

Remaining Input

2-2*2

Expr

Expr

So
Backtrack!

Applied Production

Expr → Expr - Term

Backtracking Example

Start
Parse
Tree

Sentential Form

Remaining Input

2-2*2

Expr - Term

Expr

Term Expr -

Term
Applied Production

Expr → Term

Backtracking Example

Start
Parse
Tree

Sentential Form

Remaining Input

2-2*2

Term - Term

Expr

Term Expr -

Term
Applied Production

Term → Int

Backtracking Example

Start
Parse
Tree

Sentential Form

Remaining Input

2-2*2

Int - Term

Expr

Term Expr -

Int

Match
Input

Token!

Term

Backtracking Example

Start
Parse
Tree

Sentential Form

Remaining Input

-2*2

2 - Term

Expr

Term Expr -

Int 2

Match
Input

Token!

Term

Backtracking Example

Start
Parse
Tree

Sentential Form

Remaining Input

2*2

2 - Term

Expr

Term Expr -

Int 2

Left Recursion + Top-Down Parsing
= Infinite Loop

•  Example Production: Term → Term*Num
•  Potential parsing steps:

Term

Num * Term

Term

Term

Num * Term

Term

Num *

General Search Issues

•  Three components
•  Search space (parse trees)
•  Search algorithm (parsing algorithm)
•  Goal to find (parse tree for input program)

•  Would like to (but can�t always) ensure that
•  Find goal (hopefully quickly) if it exists
•  Search terminates if it does not

•  Handled in various ways in various contexts
•  Finite search space makes it easy
•  Exploration strategies for infinite search space
•  Sometimes one goal more important (model checking)

•  For parsing, hack grammar to remove left recursion

Eliminating Left Recursion
•  Start with productions of form

•  A →A α
•  A → β
•  α, β sequences of terminals and nonterminals that

do not start with A
•  Repeated application of A →A α

 builds parse tree like this:
A

α A

α A

α β

Eliminating Left Recursion
•  Replacement productions

– A →A α A → β R R is a new nonterminal
– A → β R → α R
–  R → ε

A

α A

α β

A

β
R

α
R

α R

ε

Old Parse Tree
New Parse Tree

Hacked Grammar

Original Grammar
Fragment

Term → Term * Int
Term → Term / Int
Term → Int

New Grammar Fragment
Term → Int Term�
Term��→ * Int Term�
Term��→ / Int Term�

Term��→ ε

Term

Int *

Term

Int *

Int

Term

Int Term�

Int * Term�

Int * Term�

ε

Parse Tree Comparisons

Original Grammar New Grammar

Eliminating Left Recursion

•  Changes search space exploration algorithm
•  Eliminates direct infinite recursion
•  But grammar less intuitive

•  Sets things up for predictive parsing

Predictive Parsing

•  Alternative to backtracking
•  Useful for programming languages, which can be

designed to make parsing easier
•  Basic idea

•  Look ahead in input stream
•  Decide which production to apply based on

next tokens in input stream
•  We will use one token of lookahead

Predictive Parsing Example Grammar

Start → Expr
Expr → Term Expr�
Expr��→ + Expr�
Expr��→ - Expr�

Expr��→ ε

Term → Int Term�
Term��→ * Int Term�
Term��→ / Int Term�

Term��→ ε

Choice Points

•  Assume Term���is current position in parse tree
•  Have three possible productions to apply

Term��→ * Int Term�
Term��→ / Int Term�
Term��→ ε

•  Use next token to decide
•  If next token is *, apply Term��→ * Int Term�
•  If next token is /, apply Term��→ / Int Term�
•  Otherwise, apply Term��→ ε

Predictive Parsing + Hand Coding =
Recursive Descent Parser

•  One procedure per nonterminal NT
•  Productions NT → β1 , …, NT → βn

•  Procedure examines the current input symbol T to
determine which production to apply
•  If T∈First(βk)
• Apply production k
• Consume terminals in βk (check for correct

terminal)
• Recursively call procedures for nonterminals in βk

•  Current input symbol stored in global variable token
•  Procedures return

•  true if parse succeeds
•  false if parse fails

Example Boolean Term()
 if (token = Int n) token = NextToken(); return(TermPrime())
 else return(false)

Boolean TermPrime()
 if (token = *)
 token = NextToken();
 if (token = Int n) token = NextToken(); return(TermPrime())
 else return(false)

 else if (token = /)
 token = NextToken();
 if (token = Int n) token = NextToken(); return(TermPrime())
 else return(false)
 else return(true)

Term → Int Term�
Term��→ * Int Term�
Term��→ / Int Term�
Term��→ ε

Multiple Productions With Same
Prefix in RHS

•  Example Grammar
NT → if then
NT → if then else

•  Assume NT is current position in parse tree, and
if is the next token

•  Unclear which production to apply
•  Multiple k such that T∈First(βk)
•  if ∈ First(if then)
•  if ∈ First(if then else)

Solution: Left Factor the Grammar

•  New Grammar Factors Common Prefix Into
Single Production
NT → if then NT�
NT��→ else
NT��→ ε

•  No choice when next token is if!
•  All choices have been unified in one production.

Nonterminals

•  What about productions with nonterminals?

NT → NT1 α1
NT → NT2 α 2

•  Must choose based on possible first terminals
that NT1 and NT2 can generate

•  What if NT1 or NT2 can generate ε?

•  Must choose based on α1 and α2

NT derives ε

•  Two rules
•  NT → ε implies NT derives ε
•  NT → NT1 ... NTn and for all 1≤i ≤n NTi

derives ε implies NT derives ε

Fixed Point Algorithm for Derives ε

for all nonterminals NT
 set NT derives ε to be false

for all productions of the form NT → ε
set NT derives ε to be true

while (some NT derives ε changed in last iteration)
for all productions of the form NT → NT1 ... NTn
 if (for all 1≤i ≤n NTi derives ε)
 set NT derives ε to be true

First(β)

•  T∈ First(β) if T can appear as the first
symbol in a derivation starting from β
1) T∈First(T)
2) First(S) ⊆ First(S β)
3) NT derives ε implies First(β) ⊆ First(NT β)
4) NT → S β implies First(S β) ⊆ First(NT)

•  Notation
•  T is a terminal, NT is a nonterminal, S is a

terminal or nonterminal, and β is a sequence
of terminals or nonterminals

Rules + Request Generate System of Subset
 Inclusion Constraints

Grammar
Term��→ * Int Term�
Term��→ / Int Term�
Term��→ ε

Request: What is First(Term��)?

Constraints
First(* Num Term��) ⊆

First(Term��)
First(/ Num Term��) ⊆

First(Term��)
First(*) ⊆ First(* Num Term��)
First(/) ⊆ First(/ Num Term��)
∈First()
/ ∈First(/)

Rules
1) T∈First(T)
2) First(S) ⊆ First(S β)
3) NT derives ε implies

First(β) ⊆ First(NT β)
4) NT → S β implies

 First(S β) ⊆ First(NT)

Constraint Propagation Algorithm

Constraints
First(* Num Term��) ⊆ First(Term��)
First(/ Num Term��) ⊆ First(Term��)
First(*) ⊆ First(* Num Term��)
First(/) ⊆ First(/ Num Term��)
∈First()
/ ∈First(/)

Solution
First(Term��) = {}
First(* Num Term��) = {}
First(/ Num Term��) = {}
First(*) = {*}
First(/) = {/}

Initialize Sets to {}
Propagate Constraints Until

Fixed Point

Constraint Propagation Algorithm

Constraints
First(* Num Term��) ⊆ First(Term��)
First(/ Num Term��) ⊆ First(Term��)
First(*) ⊆ First(* Num Term��)
First(/) ⊆ First(/ Num Term��)
∈First()
/ ∈First(/)

Solution
First(Term��) = {}
First(* Num Term��) = {}
First(/ Num Term��) = {}
First(*) = {*}
First(/) = {/}

Grammar
Term��→ * Int Term�
Term��→ / Int Term�
Term��→ ε

Constraint Propagation Algorithm

Solution
First(Term��) = {}
First(* Num Term��) = {*}
First(/ Num Term��) = {/}
First(*) = {*}
First(/) = {/}

Constraints
First(* Num Term��) ⊆ First(Term��)
First(/ Num Term��) ⊆ First(Term��)
First(*) ⊆ First(* Num Term��)
First(/) ⊆ First(/ Num Term��)
∈First()
/ ∈First(/)

Grammar
Term��→ * Int Term�
Term��→ / Int Term�
Term��→ ε

Constraint Propagation Algorithm

Solution
First(Term��) = {*,/}
First(* Num Term��) = {*}
First(/ Num Term��) = {/}
First(*) = {*}
First(/) = {/}

Constraints
First(* Num Term��) ⊆ First(Term��)
First(/ Num Term��) ⊆ First(Term��)
First(*) ⊆ First(* Num Term��)
First(/) ⊆ First(/ Num Term��)
∈First()
/ ∈First(/)

Grammar
Term��→ * Int Term�
Term��→ / Int Term�
Term��→ ε

Grammar
Term��→ * Int Term�
Term��→ / Int Term�
Term��→ ε

Constraint Propagation Algorithm

Solution
First(Term��) = {*,/}
First(* Num Term��) = {*}
First(/ Num Term��) = {/}
First(*) = {*}
First(/) = {/}

Constraints
First(* Num Term��) ⊆ First(Term��)
First(/ Num Term��) ⊆ First(Term��)
First(*) ⊆ First(* Num Term��)
First(/) ⊆ First(/ Num Term��)
∈First()
/ ∈First(/)

Building A Parse Tree

•  Have each procedure return the section of the
parse tree for the part of the string it parsed

•  Use exceptions to make code structure clean

Building Parse Tree In Example
Term()

 if (token = Int n)
 oldToken = token; token = NextToken();
 node = TermPrime();
 if (node == NULL) return oldToken;
 else return(new TermNode(oldToken, node);
 else throw SyntaxError

TermPrime()
 if (token = *) || (token = /)
 first = token; next = NextToken();
 if (next = Int n)
 token = NextToken();
 return(new TermPrimeNode(first, next, TermPrime())
 else throw SyntaxError
 else return(NULL)

Parse Tree for 2*3*4

Term

Int
2

Term�

Int
3

* Term�

Int
4

* Term�

ε

Term

Int
3

*

Term

Int
4

*

Int
2

Concrete
Parse Tree

Desired
Abstract

Parse Tree

Why Use Hand-Coded Parser?

•  Why not use parser generator?
•  What do you do if your parser doesn�t work?

•  Recursive descent parser – write more code
•  Parser generator

• Hack grammar
• But if parser generator doesn�t work,

nothing you can do
•  If you have complicated grammar

•  Increase chance of going outside comfort zone
of parser generator

•  Your parser may NEVER work

Bottom Line

•  Recursive descent parser properties
•  Probably more work
•  But less risk of a disaster - you can almost always

make a recursive descent parser work
•  May have easier time dealing with resulting code

• Single language system
• No need to deal with potentially flaky parser

generator
• No integration issues with automatically

generated code
•  If your parser development time is small compared to

rest of project, or you have a really complicated
language, use hand-coded recursive descent parser

Summary

•  Top-Down Parsing
•  Use Lookahead to Avoid Backtracking
•  Parser is

•  Hand-Coded
•  Set of Mutually Recursive Procedures

Direct Generation of Abstract Tree
•  TermPrime builds an incomplete tree

•  Missing leftmost child
•  Returns root and incomplete node

•  (root, incomplete) = TermPrime()

•  Called with token = *
•  Remaining tokens = 3 * 4

Term

Int
3

*

Term

Int
4

*

root

incomplete

Missing left child
to be filled in by

caller

Code for Term
Term()

 if (token = Int n)
 leftmostInt = token; token = NextToken();
 (root, incomplete) = TermPrime();
 if (root == NULL) return leftmostInt;
 incomplete.leftChild = leftmostInt;
 return root;
 else throw SyntaxError

Int
2

token

2*3*4

Input to
parse

Code for Term
Term()

 if (token = Int n)
 leftmostInt = token; token = NextToken();
 (root, incomplete) = TermPrime();
 if (root == NULL) return leftmostInt;
 incomplete.leftChild = leftmostInt;
 return root;
 else throw SyntaxError

Int
2

token

2*3*4

Input to
parse

Code for Term
Term()

 if (token = Int n)
 leftmostInt = token; token = NextToken();
 (root, incomplete) = TermPrime();
 if (root == NULL) return leftmostInt;
 incomplete.leftChild = leftmostInt;
 return root;
 else throw SyntaxError

Int
2

token

2*3*4

Input to
parse

Code for Term
Term()

 if (token = Int n)
 leftmostInt = token; token = NextToken();
 (root, incomplete) = TermPrime();
 if (root == NULL) return leftmostInt;
 incomplete.leftChild = leftmostInt;
 return root;
 else throw SyntaxError

Term

Int
3

*

Term

Int
4

*

Int
2

root

incomplete

leftmostInt

2*3*4

Input to
parse

Code for Term
Term()

 if (token = Int n)
 leftmostInt = token; token = NextToken();
 (root, incomplete) = TermPrime();
 if (root == NULL) return leftmostInt;
 incomplete.leftChild = leftmostInt;
 return root;
 else throw SyntaxError

Term

Int
3

*

Term

Int
4

*

Int
2

root

incomplete

leftmostInt

2*3*4

Input to
parse

Code for Term
Term()

 if (token = Int n)
 leftmostInt = token; token = NextToken();
 (root, incomplete) = TermPrime();
 if (root == NULL) return leftmostInt;
 incomplete.leftChild = leftmostInt;
 return root;
 else throw SyntaxError

Term

Int
3

*

Term

Int
4

*

Int
2

root

incomplete

leftmostInt

2*3*4

Input to
parse

Code for TermPrime

TermPrime()
 if (token = *) || (token = /)
 op = token; next = NextToken();
 if (next = Int n)
 token = NextToken();
 (root, incomplete) = TermPrime();
 if (root == NULL)
 root = new ExprNode(NULL, op, next);
 return (root, root);
 else newChild = new ExprNode(NULL, op, next);
 incomplete.leftChild = newChild;
 return(root, newChild);
 else throw SyntaxError
 else return(NULL,NULL)

Missing left child
to be filled in by

caller

