MIT 6.035 Top-Down Parsing

Martin Rinard Laboratory for Computer Science Massachusetts Institute of Technology

Orientation

- Language specification
 - Lexical structure regular expressions
 - Syntactic structure grammar
- This Lecture recursive descent parsers
 - Code parser as set of mutually recursive procedures
 - Structure of program matches structure of grammar

Starting Point

- Assume lexical analysis has produced a sequence of tokens
 - Each token has a type and value
 - Types correspond to terminals
 - Values to contents of token read in
- Examples
 - Int 549 integer token with value 549 read in
 - if if keyword, no need for a value
 - AddOp + add operator, value +

Basic Approach

- Start with Start symbol
- Build a leftmost derivation
 - If leftmost symbol is nonterminal, choose a production and apply it
 - If leftmost symbol is terminal, match against input
 - If all terminals match, have found a parse!
 - Key: find correct productions for nonterminals

Graphical Illustration of Leftmost Derivation

Sentential Form

$N_{1}T_{1}T_{1}T_{2}T_{3}N_{1}T_{2}N_{3}T_{3}$

Apply Production Here Not Here

Grammar for Parsing Example

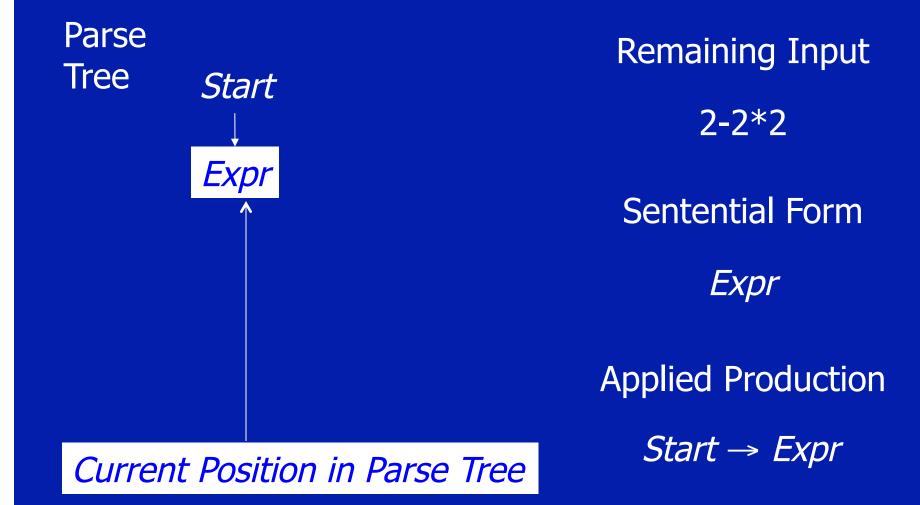
Start \rightarrow Expr Expr \rightarrow Expr + Term Expr \rightarrow Expr - Term Expr \rightarrow Term Term \rightarrow Term * Int Term \rightarrow Term / Int Term \rightarrow Int

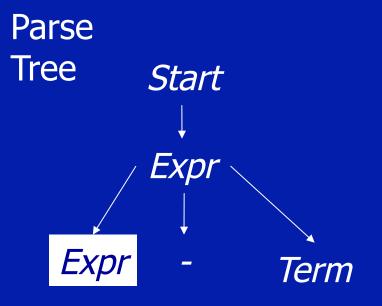
Set of tokens is

 {+, -, *, /, Int }, where
 Int = [0-9][0-9]*

• For convenience, may represent each Int n token by n

Current Position in Parse Tree

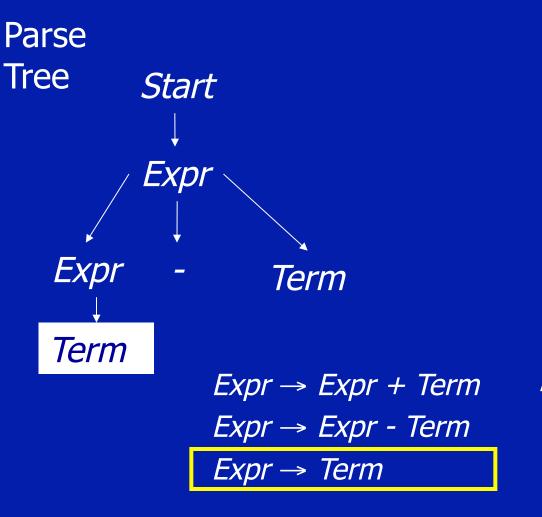




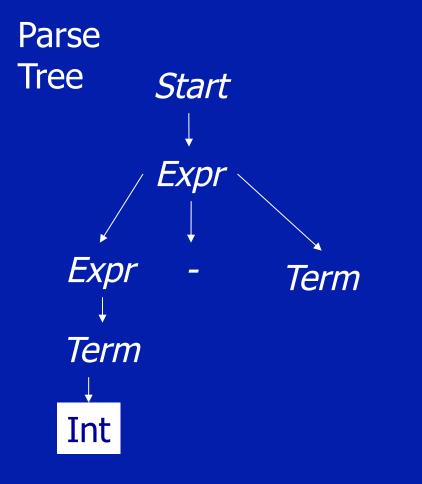
Remaining Input 2-2*2 Sentential Form *Expr - Term* Applied Production

 $Expr \rightarrow Expr + Term$ $Expr \rightarrow Expr - Term$ $Expr \rightarrow Term$

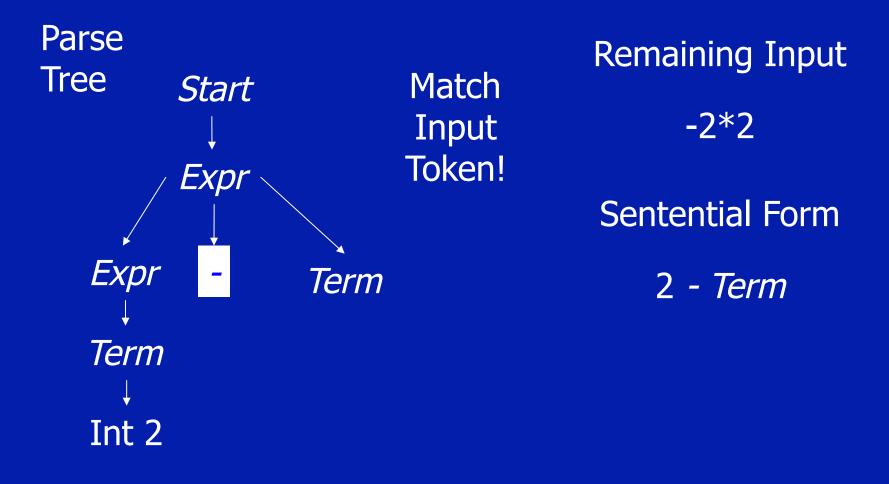
Expr → Expr - Term

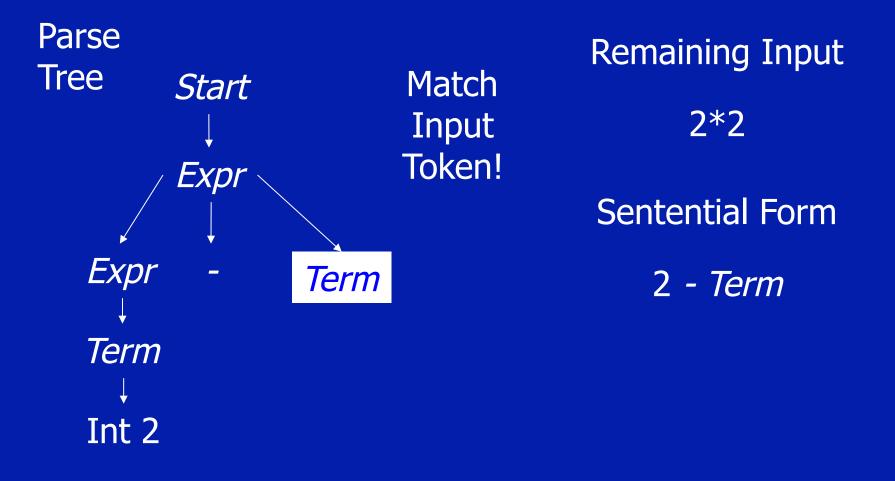


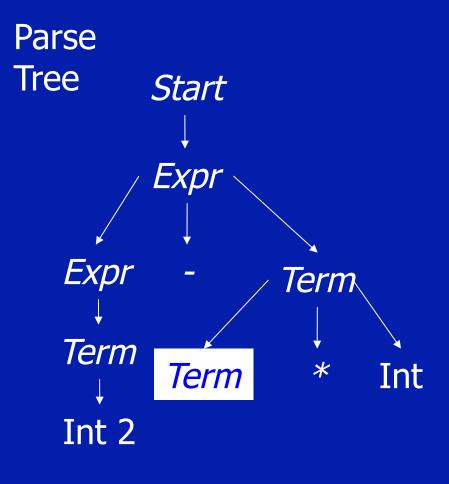
Remaining Input 2-2*2 **Sentential Form** Term - Term **Applied Production** *Expr* → *Term*



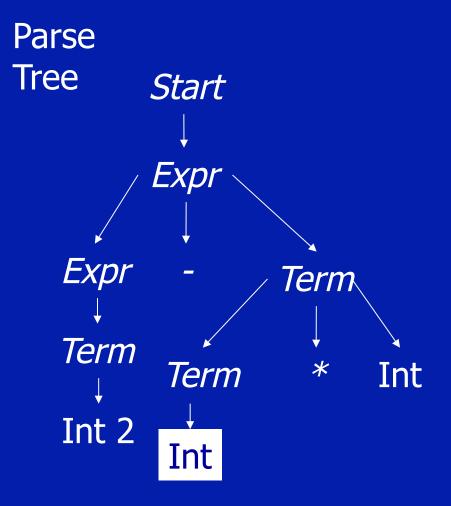
Remaining Input 2-2*2 **Sentential Form** Int - Term **Applied Production** *Term* \rightarrow Int



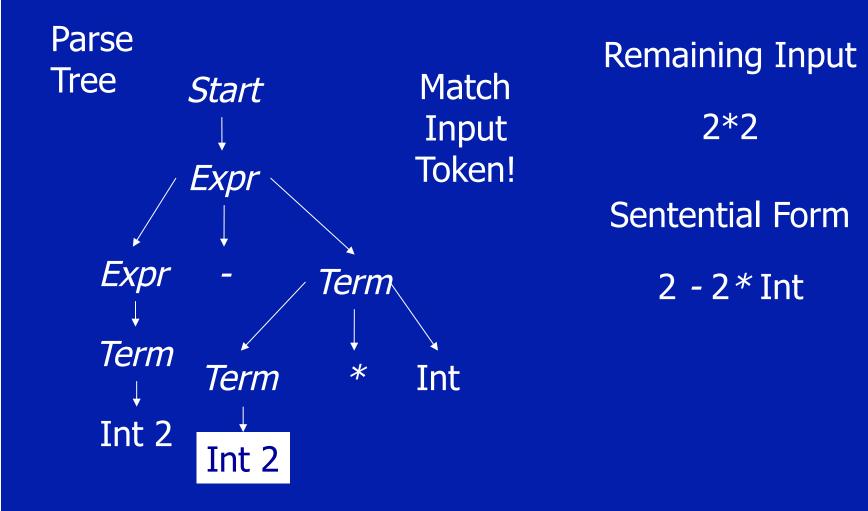


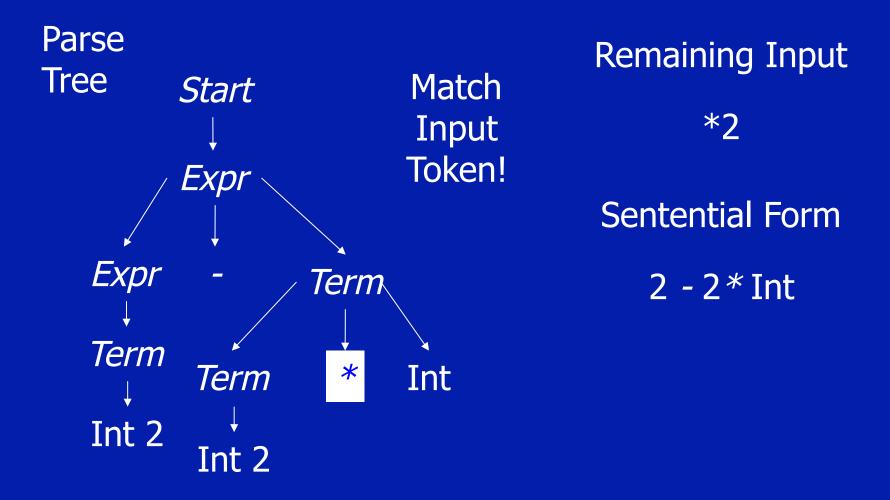


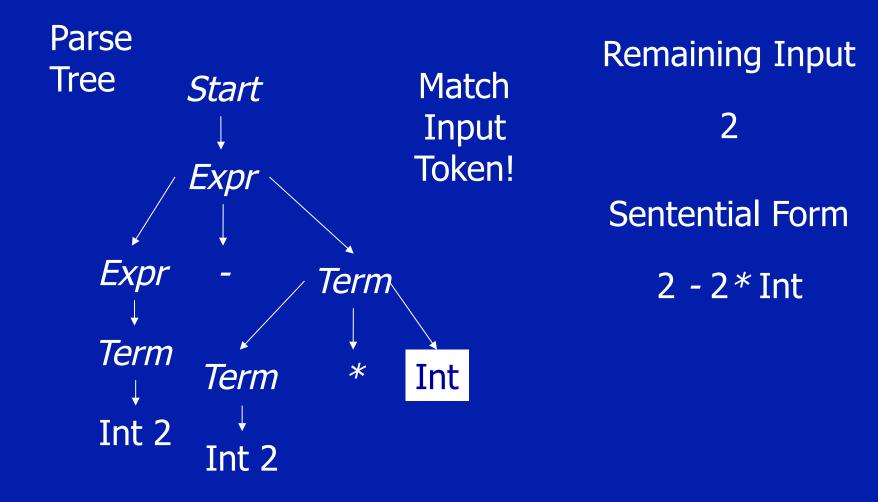
Remaining Input 2*2 **Sentential Form** 2 - Term*Int **Applied Production** *Term* \rightarrow *Term* * Int

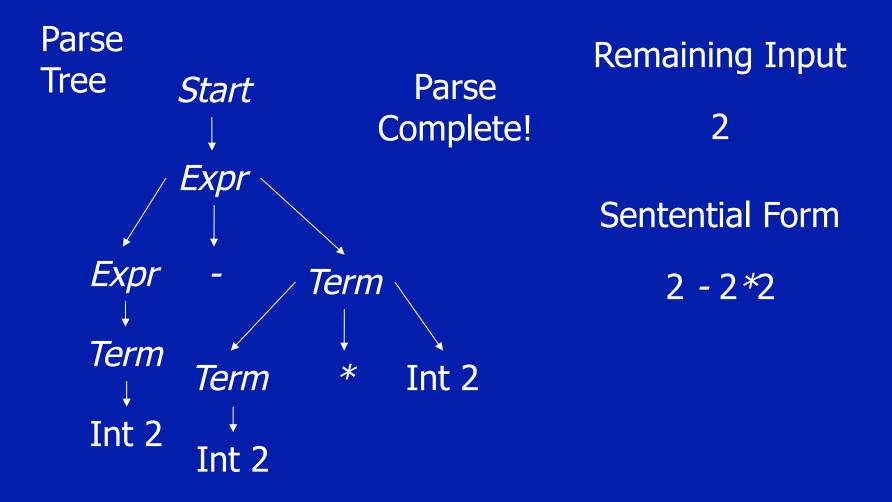


Remaining Input 2*2 **Sentential Form** 2 - Int * Int **Applied Production** *Term* \rightarrow Int









Summary

- Three Actions (Mechanisms)
 - Apply production to expand current nonterminal in parse tree
 - Match current terminal (consuming input)
 - Accept the parse as correct
- Parser generates preorder traversal of parse tree
 - visit parents before children
 - visit siblings from left to right

Policy Problem

- Which production to use for each nonterminal?
- Classical Separation of Policy and Mechanism
- One Approach: Backtracking
 - Treat it as a search problem
 - At each choice point, try next alternative
 - If it is clear that current try fails, go back to previous choice and try something different
- General technique for searching
- Used a lot in classical AI and natural language processing (parsing, speech recognition)

Parse Tree

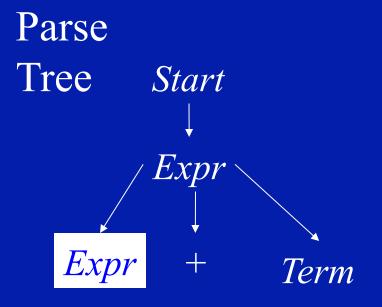
Remaining Input 2-2*2

Sentential Form

Start

Parse Tree

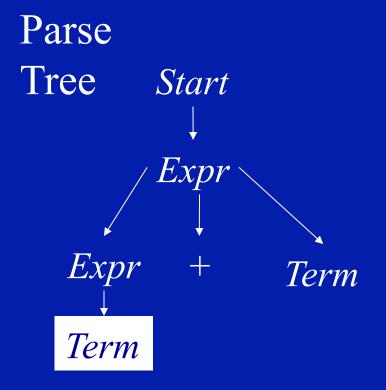
Remaining Input 2-2*2 Sentential Form Expr **Applied Production** $Start \rightarrow Expr$



Remaining Input 2-2*2

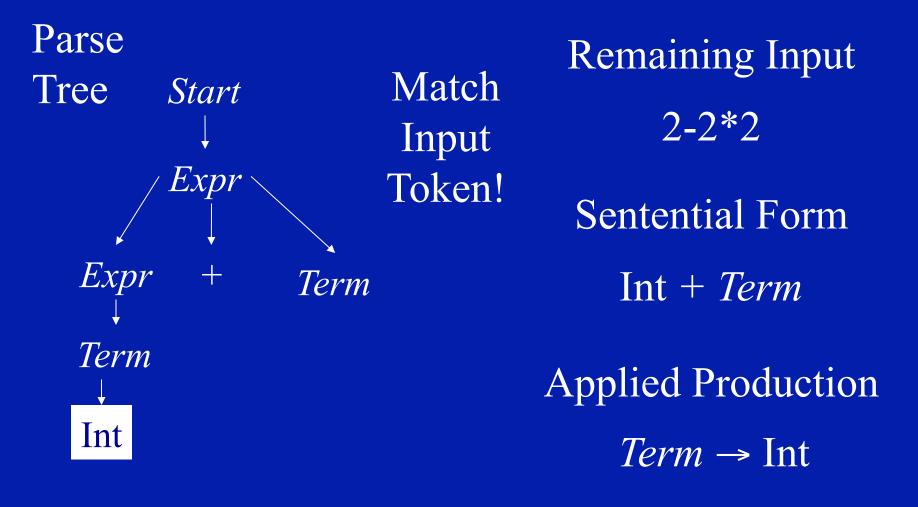
Sentential Form *Expr* + *Term*

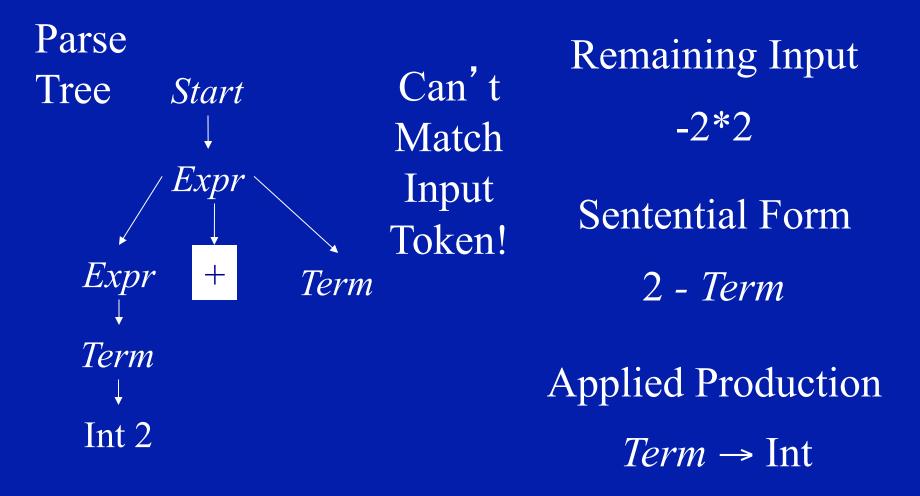
Applied Production $Expr \rightarrow Expr + Term$



Remaining Input 2-2*2 Sentential Form *Term* + *Term* Applied Production

 $Expr \rightarrow Term$





Parse Tree

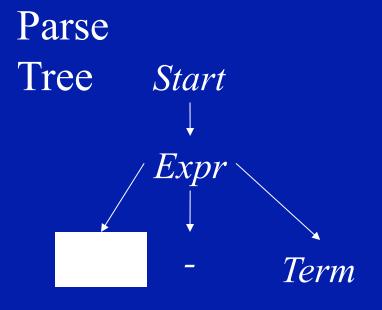
SoRemaining InputBacktrack!2-2*2

Sentential Form

Expr

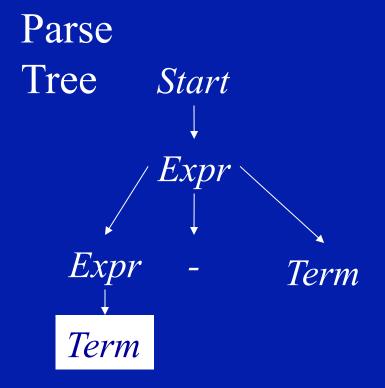
Applied Production

 $Start \rightarrow Expr$



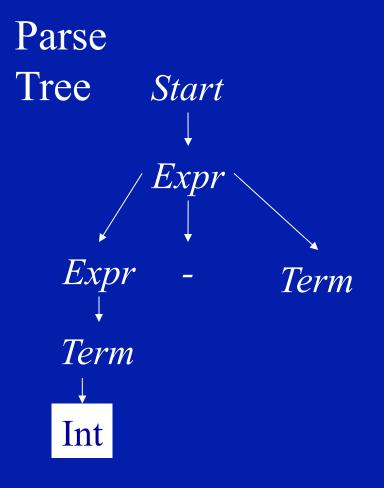
Remaining Input 2-2*2 Sentential Form *Expr - Term*

Applied Production $Expr \rightarrow Expr - Term$

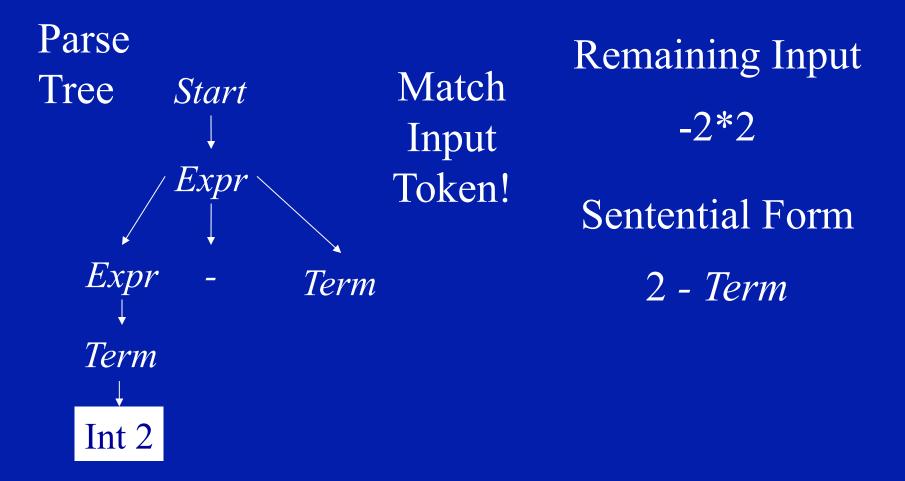


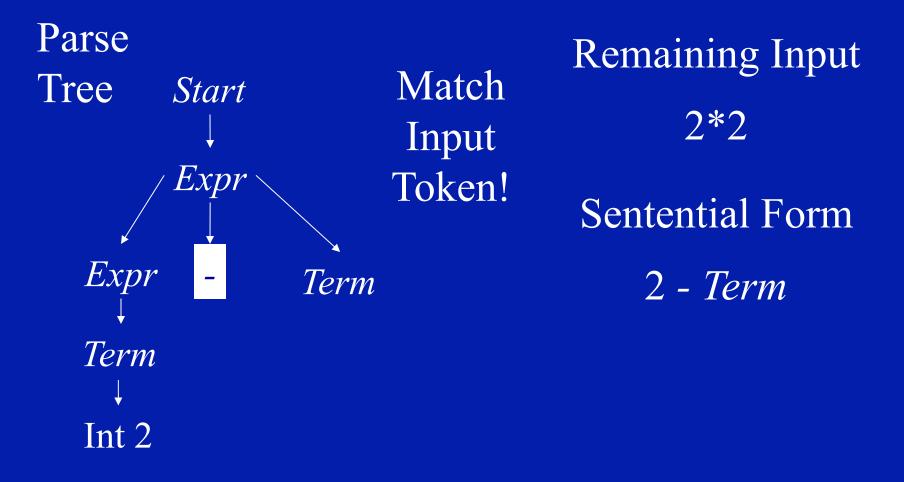
Remaining Input 2-2*2 Sentential Form *Term - Term* Applied Production

 $Expr \rightarrow Term$



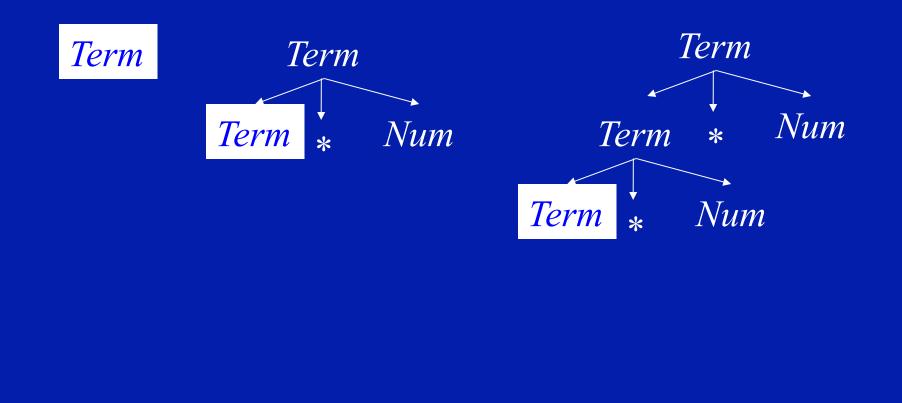
Remaining Input 2-2*2 Sentential Form Int - Term **Applied Production** *Term* \rightarrow Int





Left Recursion + Top-Down Parsing = Infinite Loop

- Example Production: *Term* → *Term***Num*
- Potential parsing steps:

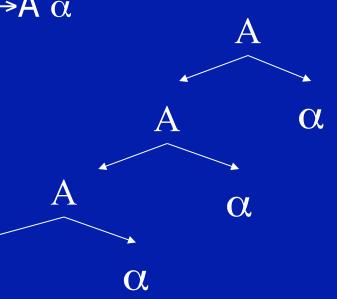


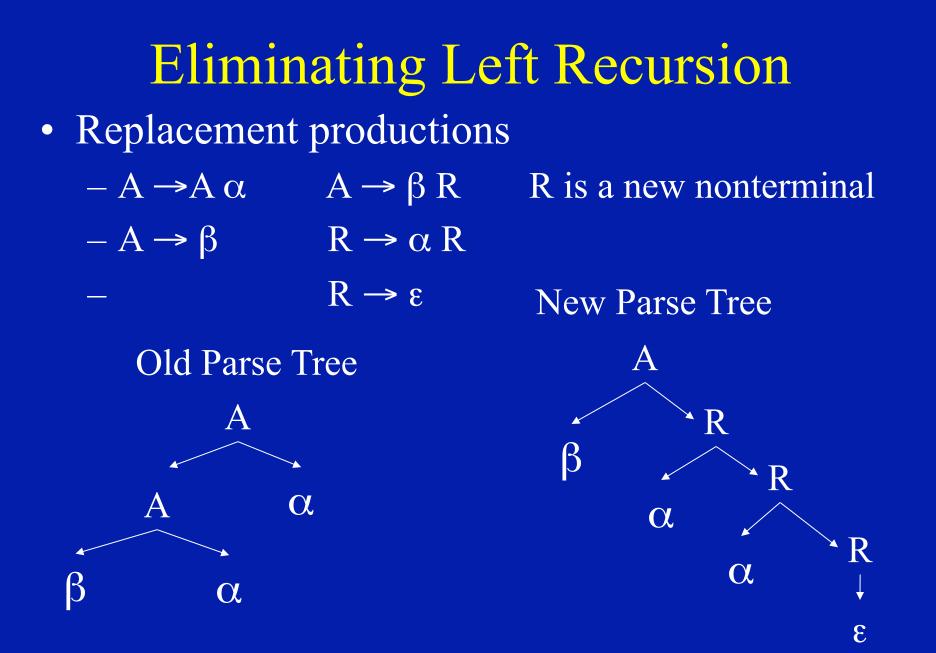
General Search Issues

- Three components
 - Search space (parse trees)
 - Search algorithm (parsing algorithm)
 - Goal to find (parse tree for input program)
- Would like to (but can't always) ensure that
 - Find goal (hopefully quickly) if it exists
 - Search terminates if it does not
- Handled in various ways in various contexts
 - Finite search space makes it easy
 - Exploration strategies for infinite search space
 - Sometimes one goal more important (model checking)
- For parsing, hack grammar to remove left recursion

Eliminating Left Recursion

- Start with productions of form
 - $A \rightarrow A \alpha$
 - $A \rightarrow \beta$
 - α , β sequences of terminals and nonterminals that do not start with A
- Repeated application of A \rightarrow A α builds parse tree like this:





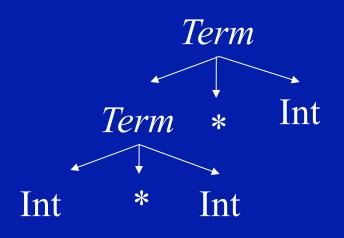
Hacked Grammar

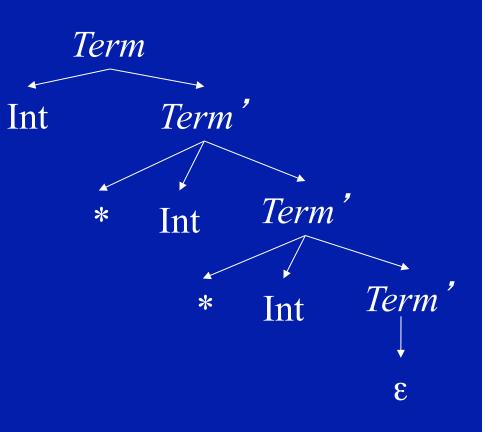
Original Grammar Fragment Term \rightarrow Term * Int Term \rightarrow Term / Int Term \rightarrow Int New Grammar Fragment $Term \rightarrow Int Term'$ $Term' \rightarrow * Int Term'$ $Term' \rightarrow / Int Term'$ $Term' \rightarrow \varepsilon$

Parse Tree Comparisons

Original Grammar

New Grammar





Eliminating Left Recursion

- Changes search space exploration algorithm
 - Eliminates direct infinite recursion
 - But grammar less intuitive
- Sets things up for predictive parsing

Predictive Parsing

- Alternative to backtracking
- Useful for programming languages, which can be designed to make parsing easier
- Basic idea
 - Look ahead in input stream
 - Decide which production to apply based on next tokens in input stream
 - We will use one token of lookahead

Predictive Parsing Example Grammar

Start → Expr Expr → Term Expr' Expr' → + Expr' Expr' → - Expr'

 $Expr' \rightarrow \varepsilon$

 $Term \rightarrow Int Term'$ $Term' \rightarrow * Int Term'$ $Term' \rightarrow / Int Term'$ $Term' \rightarrow \epsilon$

Choice Points

- Assume *Term'* is current position in parse tree
- Have three possible productions to apply
 - $Term' \rightarrow * Int Term'$ $Term' \rightarrow / Int Term'$

Term' $\rightarrow \epsilon$

- Use next token to decide
 - If next token is *, apply *Term'* → * Int *Term'*
 - If next token is /, apply $\overline{Term'} \rightarrow / \operatorname{Int} \overline{Term'}$
 - Otherwise, apply *Term'* $\rightarrow \epsilon$

Predictive Parsing + Hand Coding = Recursive Descent Parser

- One procedure per nonterminal NT
 - Productions $NT \rightarrow \beta_1$, ..., $NT \rightarrow \beta_n$
 - Procedure examines the current input symbol T to determine which production to apply
 - If T \in First(β_k)
 - Apply production k
 - Consume terminals in β_k (check for correct terminal)
 - Recursively call procedures for nonterminals in β_k
 - Current input symbol stored in global variable token
- Procedures return
 - true if parse succeeds
 - false if parse fails

```
Example
Boolean Term()
  if (token = Int n) token = NextToken(); return(TermPrime())
  else return(false)
Boolean TermPrime()
  if (token = *)
       token = NextToken();
       if (token = Int n) token = NextToken(); return(TermPrime())
       else return(false)
  else if (token = /)
       token = NextToken();
       if (token = Int n) token = NextToken(); return(TermPrime())
       else return(false)
  else return(true)
                                   Term → Int Term'
                                   <u>Term'</u> → * Int Term'
                                   Term' \rightarrow / Int Term'
```

```
Term' \rightarrow \varepsilon
```

Multiple Productions With Same Prefix in RHS

- Example Grammar
 - $NT \rightarrow \text{if then}$
 - $NT \rightarrow$ if then else
- Assume *NT* is current position in parse tree, and if is the next token
- Unclear which production to apply
 - Multiple k such that $T \in First(\beta_k)$
 - if \in First(if then)
 - if \in First(if then else)

Solution: Left Factor the Grammar

- New Grammar Factors Common Prefix Into Single Production
 NT → if then NT'
 NT' → else
 NT' → ε
- No choice when next token is if!
- All choices have been unified in one production.

Nonterminals

- What about productions with nonterminals? $NT \rightarrow NT_1 \alpha_1$ $NT \rightarrow NT_2 \alpha_2$
- Must choose based on possible first terminals that NT₁ and NT₂ can generate
- What if NT_1 or NT_2 can generate ε ?
 - Must choose based on α_1 and α_2

NT derives ε

• Two rules

- $NT \rightarrow \varepsilon$ implies NT derives ε
- $NT \rightarrow NT_1 \dots NT_n$ and for all $1 \le i \le n NT_i$ derives ε implies NT derives ε

Fixed Point Algorithm for Derives ε

for all nonterminals NTset NT derives ε to be false for all productions of the form $NT \rightarrow \varepsilon$ set NT derives ε to be true while (some NT derives ε changed in last iteration) for all productions of the form $NT \rightarrow NT_1 \dots NT_n$ if (for all $1 \le i \le n NT_i$ derives ε) set NT derives ε to be true

$First(\beta)$

- T∈ First(β) if T can appear as the first symbol in a derivation starting from β
 1) T∈First(T)
 2) First(S) ⊆ First(Sβ)
 3) NT derives ε implies First(β) ⊆ First(NTβ)
 4) NT → Sβ implies First(Sβ) ⊆ First(NT)
- Notation
 - T is a terminal, NT is a nonterminal, S is a terminal or nonterminal, and β is a sequence of terminals or nonterminals

Rules + Request Generate System of Subset Inclusion Constraints

Grammar $Term' \rightarrow * Int Term'$ $Term' \rightarrow / Int Term'$ $Term' \rightarrow \epsilon$

Rules 1) $T \in \text{First}(T)$ 2) $\text{First}(S) \subseteq \text{First}(S \beta)$ 3) NT derives ϵ implies $\text{First}(\beta) \subseteq \text{First}(NT \beta)$ 4) $NT \rightarrow S \beta$ implies $\text{First}(S \beta) \subseteq \text{First}(NT)$ Request: What is First(*Term'*)?

Constraints First(* Num Term') \subseteq First(Term') First(/ Num Term') \subseteq First(Term') First(*) \subseteq First(* Num Term') First(/) \subseteq First(/ Num Term') * \in First(*) / \in First(/)

Constraints First(* Num Term') \subseteq First(Term') First(/ Num Term') \subseteq First(Term') First(*) \subseteq First(* Num Term') First(/) \subseteq First(/ Num Term') * \in First(*) / \in First(/)

Solution First(*Term*') = {} First(* *Num Term*') = {} First(/ *Num Term*') = {} First(*) = {*} First(/) = {/}

Initialize Sets to {} Propagate Constraints Until Fixed Point

Constraints First(* Num Term') \subseteq First(Term') First(/ Num Term') \subseteq First(Term') First(*) \subseteq First(* Num Term') First(/) \subseteq First(/ Num Term') * \in First(*) / \in First(/)

Solution First(*Term*') = {} First(* *Num Term*') = {} First(/ *Num Term*') = {} First(*) = {*} First(/) = {/}

> Grammar $Term' \rightarrow * Int Term'$ $Term' \rightarrow / Int Term'$ $Term' \rightarrow \varepsilon$

Constraints First(* Num Term') \subseteq First(Term') First(/ Num Term') \subseteq First(Term') First(*) \subseteq First(* Num Term') First(/) \subseteq First(/ Num Term') * \in First(*) / \in First(/)

Solution First(*Term*') = {} First(* *Num Term*') = {*} First(/ *Num Term*') = {/} First(*) = {*} First(/) = {/}

> Grammar $Term' \rightarrow * Int Term'$ $Term' \rightarrow / Int Term'$ $Term' \rightarrow \epsilon$

Constraints First(* Num Term') \subseteq First(Term') First(/ Num Term') \subseteq First(Term') First(*) \subseteq First(* Num Term') First(/) \subseteq First(/ Num Term') * \in First(*) / \in First(/)

Solution First(*Term*') = {*,/} First(* *Num Term*') = {*} First(/ *Num Term*') = {/} First(*) = {*} First(/) = {/}

> Grammar $Term' \rightarrow * Int Term'$ $Term' \rightarrow / Int Term'$ $Term' \rightarrow \varepsilon$

Constraints First(* Num Term') \subseteq First(Term') First(/ Num Term') \subseteq First(Term') First(*) \subseteq First(* Num Term') First(/) \subseteq First(/ Num Term') * \in First(*) / \in First(/)

Solution First(*Term*') = {*,/} First(* *Num Term*') = {*} First(/ *Num Term*') = {/} First(*) = {*} First(/) = {/}

> Grammar $Term' \rightarrow * Int Term'$ $Term' \rightarrow / Int Term'$ $Term' \rightarrow \varepsilon$

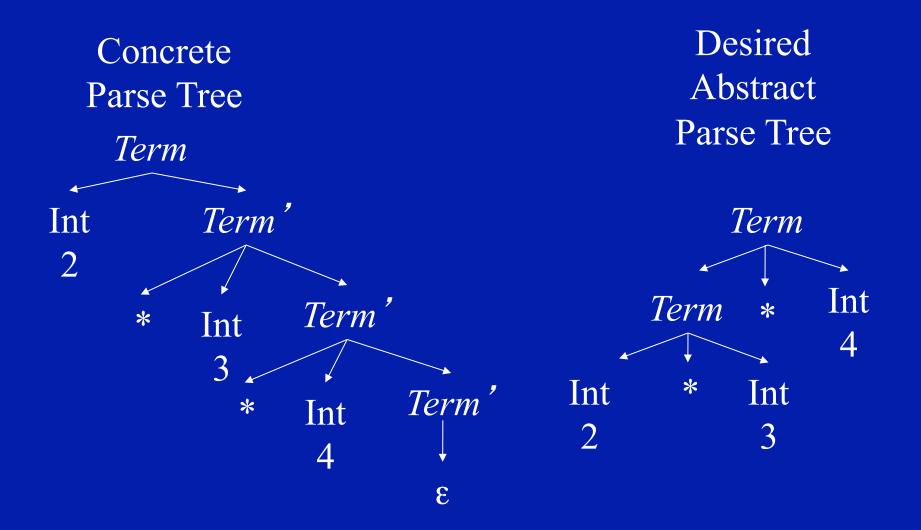
Building A Parse Tree

- Have each procedure return the section of the parse tree for the part of the string it parsed
- Use exceptions to make code structure clean

Building Parse Tree In Example

```
Term()
   if (token = Int n)
        oldToken = token; token = NextToken();
        node = TermPrime();
        if (node == NULL) return oldToken;
        else return(new TermNode(oldToken, node);
   else throw SyntaxError
TermPrime()
   if (token = *) || (token = /)
        first = token; next = NextToken();
        if (next = Int n)
                 token = NextToken();
                 return(new TermPrimeNode(first, next, TermPrime())
        else throw SyntaxError
   else return(NULL)
```

Parse Tree for 2*3*4



Why Use Hand-Coded Parser?

- Why not use parser generator?
- What do you do if your parser doesn't work?
 - Recursive descent parser write more code
 - Parser generator
 - Hack grammar
 - But if parser generator doesn't work, nothing you can do
- If you have complicated grammar
 - Increase chance of going outside comfort zone of parser generator
 - Your parser may NEVER work

Bottom Line

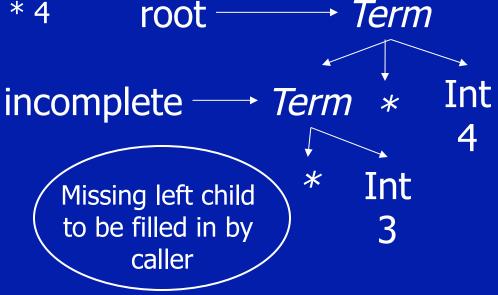
- Recursive descent parser properties
 - Probably more work
 - But less risk of a disaster you can almost always make a recursive descent parser work
 - May have easier time dealing with resulting code
 - Single language system
 - No need to deal with potentially flaky parser generator
 - No integration issues with automatically generated code
- If your parser development time is small compared to rest of project, or you have a really complicated language, use hand-coded recursive descent parser

Summary

- Top-Down Parsing
- Use Lookahead to Avoid Backtracking
- Parser is
 - Hand-Coded
 - Set of Mutually Recursive Procedures

Direct Generation of Abstract Tree

- TermPrime builds an incomplete tree
 - Missing leftmost child
 - Returns root and incomplete node
- (root, incomplete) = TermPrime()
 - Called with token = *
 - Remaining tokens = 3 * 4



Term()
if (token = Int n)
leftmostInt = token; token = NextToken();
 (root, incomplete) = TermPrime();
 if (root == NULL) return leftmostInt;
 incomplete.leftChild = leftmostInt;
 return root;
 else throw SyntaxError

Input to parse 2*3*4

token $\longrightarrow \frac{\text{Int}}{2}$

Term()
if (token = Int n)
 leftmostInt = token; token = NextToken(); (
 (root, incomplete) = TermPrime();
 if (root == NULL) return leftmostInt;
 incomplete.leftChild = leftmostInt;
 return root;
else throw SyntaxError

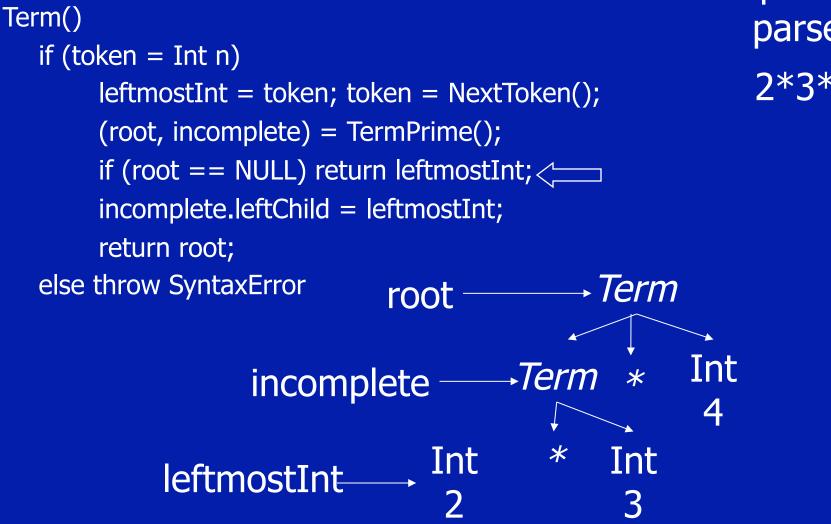
Input to parse 2*3*4

token $\longrightarrow \frac{\text{Int}}{2}$

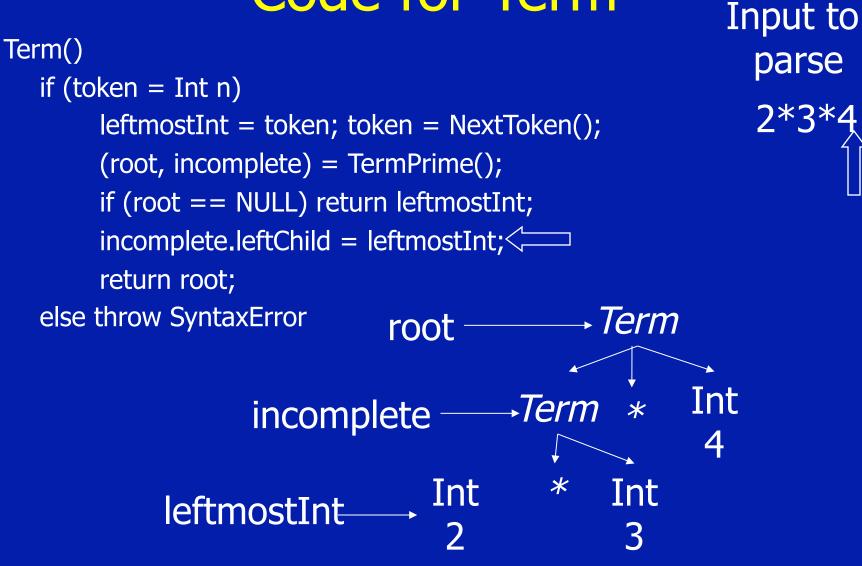
Term()
if (token = Int n)
 leftmostInt = token; token = NextToken();
 (root, incomplete) = TermPrime(); (
 if (root == NULL) return leftmostInt;
 incomplete.leftChild = leftmostInt;
 return root;
else throw SyntaxError

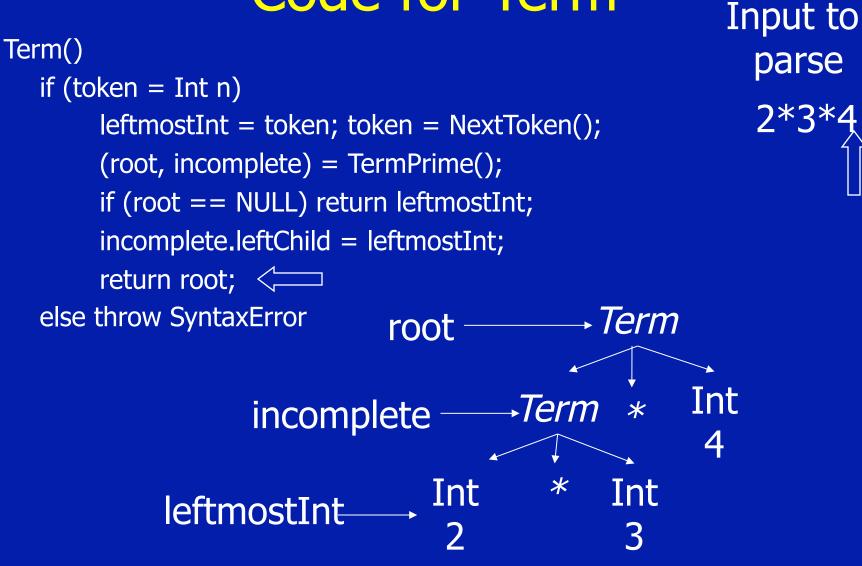
Input to parse 2*3*4

token $\longrightarrow \frac{\text{Int}}{2}$



Input to parse





Code for TermPrime

