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Language Definition Problem 

•  How to precisely define language 
•  Layered structure of language definition 

•  Start with a set of letters in language 
•  Lexical structure  - identifies “words” in language 

(each word is a sequence of letters) 
•  Syntactic structure - identifies “sentences” in 

language (each sentence is a sequence of words)  
•  Semantics - meaning of program (specifies what 

result should be for each input) 
•  Today’s topic: lexical and syntactic structures 



Specifying Formal Languages 

•  Huge Triumph of Computer Science 
•  Beautiful Theoretical Results 
•  Practical Techniques and Applications 

•  Two Dual Notions 
•  Generative approach    

 (grammar or regular expression) 
•  Recognition approach (automaton) 

•  Lots of theorems about converting one approach 
automatically to another 



Specifying Lexical Structure Using 
Regular Expressions 

•  Have some alphabet ∑ = set of letters 
•  Regular expressions are built from: 

•  ε - empty string 
•  Any letter from alphabet ∑ 
•  r1r2 – regular expression r1 followed by r2 

(sequence) 
•  r1| r2 – either regular expression r1 or r2 

(choice) 
•  r* - iterated sequence and choice ε | r | rr | … 
•  Parentheses to indicate grouping/precedence 



Concept of Regular Expression 
Generating a String 

Rewrite regular expression until have only a 
sequence of letters (string) left 

Example 
(0 | 1)*.(0|1)* 
(0 | 1)(0 | 1)*.(0|1)* 
1(0|1)*.(0|1)* 
1.(0|1)* 
1.(0|1)(0|1)* 
1.(0|1) 
1.0 

General Rules 
1) r1| r2 → r1 

2) r1| r2 → r2 

3) r* →rr* 
4) r* → ε 



Nondeterminism in Generation 

•  Rewriting is similar to equational reasoning 
•  But different rule applications may yield different final 

results 

Example 1 
(0|1)*.(0|1)* 
(0|1)(0|1)*.(0|1)* 
1(0|1)*.(0|1)* 
1.(0|1)* 
1.(0|1)(0|1)* 
1.(0|1) 
1.0 

Example 2 
(0|1)*.(0|1)* 
(0|1)(0|1)*.(0|1)* 
0(0|1)*.(0|1)* 
0.(0|1)* 
0.(0|1)(0|1)* 
0.(0|1) 
0.1 



Concept of Language Generated by 
Regular Expressions 

•  Set of all strings generated by a regular 
expression is language of regular expression 

•  In general, language may be (countably) infinite 
•  String in language is often called a token 



Examples of Languages and Regular 
Expressions 

•  ∑ = { 0, 1, . } 
•  (0|1)*.(0|1)* - Binary floating point numbers 
•  (00)* - even-length all-zero strings 
•  1*(01*01*)* - strings with even number of 

zeros 
•  ∑ = { a,b,c, 0, 1, 2 } 

•  (a|b|c)(a|b|c|0|1|2)* - alphanumeric 
identifiers 

•  (0|1|2)* - trinary numbers 



Alternate Abstraction  
Finite-State Automata 

•  Alphabet ∑ 
•  Set of states with initial and accept states 
•  Transitions between states, labeled with letters 

1 Start state 

Accept state 0 

1 

0 

. 
(0|1)*.(0|1)* 



Automaton Accepting String 
Conceptually, run string through automaton 

•  Have current state and current letter in string 
•  Start with start state and first letter in string 
•  At each step, match current letter against a transition 

whose label is same as letter 
•  Continue until reach end of string or match fails 
•  If end in accept state, automaton accepts string 
•  Language of automaton is set of strings it accepts 
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Generative Versus Recognition 

•  Regular expressions give you a way to generate 
all strings in language 

•  Automata give you a way to recognize if a specific 
string is in language 
•  Philosophically very different 
•  Theoretically equivalent (for regular 

expressions and automata) 
•  Standard approach 

•  Use regular expressions when define language 
•  Translated automatically into automata for 

implementation 



From Regular Expressions to 
Automata 

•  Construction by structural induction 
•  Given an arbitrary regular expression r 
•  Assume we can convert r to an automaton with 

•  One start state 
•  One accept state 

•  Show how to convert all constructors to deliver 
an automaton with 
•  One start state 
•  One accept state 
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NFA vs. DFA 

•  DFA 

•  No ε transitions 
• At most one transition from each state for 

each letter 

•  NFA – neither restriction 

a 

a 

a 

b 
OK NOT 

OK 



Conversions 

•  Our regular expression to automata conversion 
produces an NFA 

•  Would like to have a DFA to make recognition 
algorithm simpler 

•  Can convert from NFA to DFA (but DFA may be 
exponentially larger than NFA) 



NFA to DFA Construction 

•  DFA has a state for each subset of states in NFA 
•  DFA start state corresponds to set of states reachable by following ε 

transitions from NFA start state 
•  DFA state is an accept state if an NFA accept state is in its set of NFA 

states 
•  To compute the transition for a given DFA state D and letter a 

•  Set S to empty set 
•  Find the set N of D’s NFA states 

•  For all NFA states n in N 
–  Compute set of states N’ that the NFA may be in after 

matching a 
–  Set S to S union N’ 

•  If S is nonempty, there is a transition for a from D to the DFA state 
that has the set S of NFA states 

•  Otherwise, there is no transition for a from D 



NFA to DFA Example for (a|b)*.(a|b)* 
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Lexical Structure in Languages 

Each language typically has several categories of 
words. In a typical programming language: 

•  Keywords (if, while) 
•  Arithmetic Operations (+, -, *, /) 
•  Integer numbers (1, 2, 45, 67) 
•  Floating point numbers (1.0, .2, 3.337) 
•  Identifiers (abc, i, j, ab345) 

•  Typically have a lexical category for each 
keyword and/or each category 

•  Each lexical category defined by regexp 



Lexical Categories Example 

•  IfKeyword = if 
•  WhileKeyword = while 
•  Operator = +|-|*|/ 
•  Integer = [0-9] [0-9]* 
•  Float = [0-9]*. [0-9]* 
•  Identifier = [a-z]([a-z]|[0-9])* 
•  Note that  [0-9] = (0|1|2|3|4|5|6|7|8|9) 

[a-z] = (a|b|c|…|y|z) 
•  Will use lexical categories in next level 



Programming Language Syntax 

•  Regular languages suboptimal for specifying 
programming language syntax 

•  Why? Constructs with nested syntax 
•  (a+(b-c))*(d-(x-(y-z))) 
•  if (x < y) if (y < z) a = 5 else a = 6 else a = 7 

•  Regular languages lack state required to model 
nesting 

•  Canonical example: nested expressions 
•  No regular expression for language of 

parenthesized expressions 



Solution – Context-Free Grammar 

•  Set of terminals 
{ Op, Int, Open, Close } 
Each terminal defined 
by regular expression 

•  Set of nonterminals 
{ Start, Expr } 

•  Set of productions 
•  Single nonterminal on LHS 
•  Sequence of terminals and      

nonterminals on RHS 

Op = +|-|*|/ 
Int = [0-9] [0-9]* 
Open = < 
Close = > 
 
 
Start → Expr 
Expr → Expr Op Expr 
Expr → Int 
Expr → Open Expr Close 



Production Game 

have a current string 
start with Start nonterminal 
loop until no more nonterminals 

choose a nonterminal in current string 
choose a production with nonterminal in LHS 
replace nonterminal with RHS of production 

substitute regular expressions with corresponding 
strings 

generated string is in language 
 
Note: different choices produce different strings 



Sample Derivation 

Start 
Expr 
Expr Op Expr 
Open Expr Close Op Expr 
Open Expr Op Expr Close Op Expr 
Open Int Op Expr Close Op Expr 
Open Int Op Expr Close Op Int 
Open Int Op Int Close Op Int 
< 2 - 1 > + 1 

Op = +|-|*|/ 
Int = [0-9] [0-9]* 
Open = < 
Close = > 
 
 
1) Start → Expr 
2) Expr → Expr Op Expr 
3) Expr → Int 
4) Expr → Open Expr Close 



Parse Tree 

•  Internal Nodes: Nonterminals 
•  Leaves: Terminals 
•  Edges:  

•  From Nonterminal of LHS of production 
•  To Nodes from RHS of production 

•  Captures derivation of string 
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Ambiguity in Grammar 

Grammar is ambiguous if there are multiple derivations 
(therefore multiple parse trees) for a single string 

 
Derivation and parse tree usually reflect semantics of 

the program 
 

Ambiguity in grammar often reflects ambiguity in 
semantics of language  

(which is considered undesirable) 



Ambiguity Example 
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Eliminating Ambiguity 

Solution: hack the grammar 
 
 
 
 
 
 

Conceptually, makes all operators associate to left 

Original Grammar 
Start → Expr 
Expr → Expr Op Expr 
Expr → Int 
Expr → Open Expr Close 

Hacked Grammar 
Start → Expr 
Expr → Expr Op Int 
Expr → Int 
Expr → Open Expr Close 



Parse Trees for Hacked Grammar 
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Precedence Violations 

•  All operators associate to left 
•  Violates precedence of * over + 

•  2-3*4 associates like <2-3>*4 Start 
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Expr Op 
* 

Expr Op 
- 
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4 
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Hacking Around Precedence 

Original Grammar 
Op = +|-|*|/ 
Int = [0-9] [0-9]* 
Open = < 
Close = > 
 
Start → Expr 
Expr → Expr Op Int 
Expr → Int 
Expr → Open Expr Close 

Hacked Grammar 
AddOp = +|- 
MulOp = *|/ 
Int = [0-9] [0-9]* 
Open = < 
Close = > 
Start → Expr 
Expr → Expr AddOp Term 
Expr → Term 
Term → Term MulOp Num 
Term → Num 
Num → Int 
Num → Open Expr Close 



Parse Tree Changes 
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General Idea 

•  Group Operators into Precedence Levels 
•  * and / are at top level, bind strongest 
•  + and - are at next level, bind next strongest 

•  Nonterminal for each Precedence Level 
•  Term is nonterminal for * and / 
•  Expr is nonterminal for + and - 

•  Can make operators left or right associative 
within each level 

•  Generalizes for arbitrary levels of precedence 



Parser 
•  Converts program into a parse tree 
•  Can be written by hand 
•  Or produced automatically by parser generator 

•  Accepts a grammar as input 
•  Produces a parser as output 

•  Practical problem 
•  Parse tree for hacked grammar is complicated 
•  Would like to start with more intuitive parse tree 



Solution 

•  Abstract versus Concrete Syntax 
•  Abstract syntax corresponds to “intuitive” way 

of thinking of structure of program 
• Omits details like superfluous keywords that 

are there to make the language 
unambiguous 

• Abstract syntax may be ambiguous 
•  Concrete Syntax corresponds to full grammar 

used to parse the language 
•  Parsers are often written to produce abstract 

syntax trees. 



Abstract Syntax Trees  

•  Start with intuitive but ambiguous grammar 
•  Hack grammar to make it unambiguous 

•  Concrete parse trees 
•  Less intuitive 

•  Convert concrete parse trees to abstract syntax 
trees 
•  Correspond to intuitive grammar for language 
•  Simpler for program to manipulate 



Example 

Intuitive but Ambiguous 
Grammar 

Op = *|/|+|- 
Int = [0-9] [0-9]* 
Start → Expr 
Expr → Expr Op Expr 
Expr → Int 

Hacked Unambiguous 
Grammar 

AddOp = +|- 
MulOp = *|/ 
Int = [0-9] [0-9]* 
Open = < 
Close = > 
Start → Expr 
Expr → Expr AddOp Term 
Expr → Term 
Term → Term MulOp Num 
Term → Num 
Num → Int 
Num → Open Expr Close 



Concrete parse 
tree  
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Summary 

•  Lexical and Syntactic Levels of Structure 
•  Lexical – regular expressions and automata 
•  Syntactic – grammars 

•  Grammar ambiguities 
•  Hacked grammars 
•  Abstract syntax trees 

•  Generation versus Recognition Approaches 
•  Generation more convenient for specification 
•  Recognition required in implementation 



Handling If Then Else 

Start → Stat 
Stat → if Expr then Stat else Stat 
Stat → if Expr then Stat 
Stat → ... 



Parse Trees  

•  Consider Statement if e1 then if e2 then s1 else s2  



Stat 

if Expr Stat 

if Expr Stat else e1 

e2 

Stat 

s1 s2 

if Expr 

Stat 

if Expr Stat else 

e2 

e1 

Stat 

s1 

s2 

Two Parse Trees  

Which is  
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then 

then 

then 



Alternative Readings 

•  Parse Tree Number 1 
if e1 

if e2 s1 
else s2 

•  Parse Tree Number 2 
if e1 

if e2 s1 
 else s2 

 

 

Grammar is ambiguous 



Hacked Grammar 
Goal → Stat  
Stat → WithElse 
Stat → LastElse 
WithElse → if Expr then WithElse else WithElse 
WithElse → <statements without if then or if then else> 
LastElse → if Expr then Stat 
LastElse → if Expr then WithElse else LastElse 



Hacked Grammar 

•  Basic Idea: control carefully where an if without 
an else can occur 
•  Either at top level of statement 
•  Or as very last in a sequence of if then else if 

then ... statements 



Grammar Vocabulary 

•  Leftmost derivation 
•  Always expands leftmost remaining 

nonterminal 
•  Similarly for rightmost derivation 

•  Sentential form 
•  Partially or fully derived string from a step in 

valid derivation 
•  0 + Expr Op Expr 
•  0 + Expr - 2 



Defining a Language 

•  Grammar 
•  Generative approach 
•  All strings that grammar generates (How many are 

there for grammar in previous example?) 
•  Automaton 

•  Recognition approach 
•  All strings that automaton accepts 

•  Different flavors of grammars and automata 
•  In general, grammars and automata correspond 



Regular Languages 

•  Automaton Characterization 
•  (S,A,F,s0,sF) 
•  Finite set of states S 
•  Finite Alphabet A 
•  Transition function F : S ×A → S 
•  Start state s0 

•  Final states sF 

•  Lanuage is set of strings accepted by Automaton 



Regular Languages 

•  Regular Grammar Characterization 
•  (T,NT,S,P) 
•  Finite set of Terminals T 
•  Finite set of Nonterminals NT 
•  Start Nonterminal S (goal symbol, start 

symbol) 
•  Finite set of Productions P: NT → T U NT U T 

NT 
•  Language is set of strings generated by grammar 



Grammar and Automata 
Correspondence 

Grammar 
Regular Grammar 

Context-Free Grammar 
Context-Sensitive Grammar 

Automaton 
Finite-State Automaton 
Push-Down Automaton 

Turing Machine 



Context-Free Grammars 

•  Grammar Characterization 
•  (T,NT,S,P) 
•  Finite set of Terminals T 
•  Finite set of Nonterminals NT 
•  Start Nonterminal S (goal symbol, start 

symbol) 
•  Finite set of Productions P: NT → (T | NT)* 

•  RHS of production can have any sequence of 
terminals or nonterminals 



Push-Down Automata 

•  DFA Plus a Stack 
•  (S,A,V, F,s0,sF) 
•  Finite set of states S 
•  Finite Input Alphabet A, Stack Alphabet V 
•  Transition relation F : S ×(A U{ε})×V → S × V* 
•  Start state s0 

•  Final states sF 

•  Each configuration consists of a state, a stack, 
and remaining input string 



CFG Versus PDA 

•  CFGs and PDAs are of equivalent power 
•  Grammar Implementation Mechanism: 

•  Translate CFG to PDA, then use PDA to parse 
input string 

•  Foundation for bottom-up parser generators 



Context-Sensitive Grammars and 
Turing Machines 

•  Context-Sensitive Grammars Allow Productions to 
Use Context 
•  P: (T.NT)+ → (T.NT)* 

•  Turing Machines Have 
•  Finite State Control 
•  Two-Way Tape Instead of A Stack 


