
MIT 6.035
Specifying Languages with Regular

Expressions and Context-Free Grammars

Martin Rinard
Laboratory for Computer Science

Massachusetts Institute of Technology

Language Definition Problem

•  How to precisely define language
•  Layered structure of language definition

•  Start with a set of letters in language
•  Lexical structure - identifies “words” in language

(each word is a sequence of letters)
•  Syntactic structure - identifies “sentences” in

language (each sentence is a sequence of words)
•  Semantics - meaning of program (specifies what

result should be for each input)
•  Today’s topic: lexical and syntactic structures

Specifying Formal Languages

•  Huge Triumph of Computer Science
•  Beautiful Theoretical Results
•  Practical Techniques and Applications

•  Two Dual Notions
•  Generative approach

 (grammar or regular expression)
•  Recognition approach (automaton)

•  Lots of theorems about converting one approach
automatically to another

Specifying Lexical Structure Using
Regular Expressions

•  Have some alphabet ∑ = set of letters
•  Regular expressions are built from:

•  ε - empty string
•  Any letter from alphabet ∑
•  r1r2 – regular expression r1 followed by r2

(sequence)
•  r1| r2 – either regular expression r1 or r2

(choice)
•  r* - iterated sequence and choice ε | r | rr | …
•  Parentheses to indicate grouping/precedence

Concept of Regular Expression
Generating a String

Rewrite regular expression until have only a
sequence of letters (string) left

Example
(0 | 1)*.(0|1)*
(0 | 1)(0 | 1)*.(0|1)*
1(0|1)*.(0|1)*
1.(0|1)*
1.(0|1)(0|1)*
1.(0|1)
1.0

General Rules
1) r1| r2 → r1

2) r1| r2 → r2

3) r* →rr*
4) r* → ε

Nondeterminism in Generation

•  Rewriting is similar to equational reasoning
•  But different rule applications may yield different final

results

Example 1
(0|1)*.(0|1)*
(0|1)(0|1)*.(0|1)*
1(0|1)*.(0|1)*
1.(0|1)*
1.(0|1)(0|1)*
1.(0|1)
1.0

Example 2
(0|1)*.(0|1)*
(0|1)(0|1)*.(0|1)*
0(0|1)*.(0|1)*
0.(0|1)*
0.(0|1)(0|1)*
0.(0|1)
0.1

Concept of Language Generated by
Regular Expressions

•  Set of all strings generated by a regular
expression is language of regular expression

•  In general, language may be (countably) infinite
•  String in language is often called a token

Examples of Languages and Regular
Expressions

•  ∑ = { 0, 1, . }
•  (0|1)*.(0|1)* - Binary floating point numbers
•  (00)* - even-length all-zero strings
•  1*(01*01*)* - strings with even number of

zeros
•  ∑ = { a,b,c, 0, 1, 2 }

•  (a|b|c)(a|b|c|0|1|2)* - alphanumeric
identifiers

•  (0|1|2)* - trinary numbers

Alternate Abstraction
Finite-State Automata

•  Alphabet ∑
•  Set of states with initial and accept states
•  Transitions between states, labeled with letters

1 Start state

Accept state 0

1

0

.
(0|1)*.(0|1)*

Automaton Accepting String
Conceptually, run string through automaton

•  Have current state and current letter in string
•  Start with start state and first letter in string
•  At each step, match current letter against a transition

whose label is same as letter
•  Continue until reach end of string or match fails
•  If end in accept state, automaton accepts string
•  Language of automaton is set of strings it accepts

1

0

1

0

11.0

. Start state

Accept state

Current letter

Current state

Example

Example

1

0

1

0

11.0

. Start state

Accept state

Current letter

Current state

Example

1

0

1

0

11.0

. Start state

Accept state

Current letter

Current state

Example

1

0

1

0

11.0

. Start state

Accept state

Current letter

Current state

Example

1

0

1

0

11.0

. Start state

Accept state

Current letter

Current state

Example

1

0

1

0

11.0

. Start state

Accept state

Current letter

Current state

String is accepted!

Generative Versus Recognition

•  Regular expressions give you a way to generate
all strings in language

•  Automata give you a way to recognize if a specific
string is in language
•  Philosophically very different
•  Theoretically equivalent (for regular

expressions and automata)
•  Standard approach

•  Use regular expressions when define language
•  Translated automatically into automata for

implementation

From Regular Expressions to
Automata

•  Construction by structural induction
•  Given an arbitrary regular expression r
•  Assume we can convert r to an automaton with

•  One start state
•  One accept state

•  Show how to convert all constructors to deliver
an automaton with
•  One start state
•  One accept state

Basic Constructs

ε
ε

a∈Σ
a

Accept state

Start state

Sequence

r1r2

Accept state

Start state

r1 r2

Sequence

r1r2

Accept state

Start state

r1 r2

Old accept state

Old start state

Sequence

r1r2

Accept state

Start state

r1 r2
ε

Old accept state

Old start state

Sequence

r1r2

Accept state

ε

Start state

r1 r2
ε

Old accept state

Old start state

Sequence

r1r2

Accept state

ε

Start state

r1 r2

ε ε

Old accept state

Old start state

Choice

r1|r2

r1

r2

Accept state

Start state

Choice

r1|r2

r1

r2

Old accept state

Old start state

Accept state

Start state

Choice

r1|r2

r1

r2

ε

ε

Old accept state

Old start state

Accept state

Start state

Choice

r1|r2

ε

r1

r2

ε ε

ε

Old accept state

Old start state

Accept state

Start state

Kleene Star

r*
r

Old accept state

Old start state

Accept state

Start state

Kleene Star

r*
r

Old accept state

Old start state

Accept state

Start state

Kleene Star

r*
r

Old accept state

Old start state

Accept state

Start state

ε ε

Kleene Star

r*
r

ε ε

ε

Old accept state

Old start state

Accept state

Start state

Kleene Star

r*
r

ε ε

ε

ε

Old accept state

Old start state

Accept state

Start state

NFA vs. DFA

•  DFA

•  No ε transitions
• At most one transition from each state for

each letter

•  NFA – neither restriction

a

a

a

b
OK NOT

OK

Conversions

•  Our regular expression to automata conversion
produces an NFA

•  Would like to have a DFA to make recognition
algorithm simpler

•  Can convert from NFA to DFA (but DFA may be
exponentially larger than NFA)

NFA to DFA Construction

•  DFA has a state for each subset of states in NFA
•  DFA start state corresponds to set of states reachable by following ε

transitions from NFA start state
•  DFA state is an accept state if an NFA accept state is in its set of NFA

states
•  To compute the transition for a given DFA state D and letter a

•  Set S to empty set
•  Find the set N of D’s NFA states

•  For all NFA states n in N
–  Compute set of states N’ that the NFA may be in after

matching a
–  Set S to S union N’

•  If S is nonempty, there is a transition for a from D to the DFA state
that has the set S of NFA states

•  Otherwise, there is no transition for a from D

NFA to DFA Example for (a|b)*.(a|b)*

ε
1 2

3

4

5 ε
ε

6

a

b

7

ε

ε

8
ε

ε

ε ε
9 10

11

12

13 ε
ε

14

a

b

15

ε

ε

16
ε

ε

ε

.

1,2,3,4,8

5,7,2,3,4,8

6,7,2,3,4,8

9,10,11,12,16

13,15,10,11,12,16

14,15,10,11,12,16

a

b

.

.

a

b

a

b

a

b

b b

a a .

Lexical Structure in Languages

Each language typically has several categories of
words. In a typical programming language:

•  Keywords (if, while)
•  Arithmetic Operations (+, -, *, /)
•  Integer numbers (1, 2, 45, 67)
•  Floating point numbers (1.0, .2, 3.337)
•  Identifiers (abc, i, j, ab345)

•  Typically have a lexical category for each
keyword and/or each category

•  Each lexical category defined by regexp

Lexical Categories Example

•  IfKeyword = if
•  WhileKeyword = while
•  Operator = +|-|*|/
•  Integer = [0-9] [0-9]*
•  Float = [0-9]*. [0-9]*
•  Identifier = [a-z]([a-z]|[0-9])*
•  Note that [0-9] = (0|1|2|3|4|5|6|7|8|9)

[a-z] = (a|b|c|…|y|z)
•  Will use lexical categories in next level

Programming Language Syntax

•  Regular languages suboptimal for specifying
programming language syntax

•  Why? Constructs with nested syntax
•  (a+(b-c))*(d-(x-(y-z)))
•  if (x < y) if (y < z) a = 5 else a = 6 else a = 7

•  Regular languages lack state required to model
nesting

•  Canonical example: nested expressions
•  No regular expression for language of

parenthesized expressions

Solution – Context-Free Grammar

•  Set of terminals
{ Op, Int, Open, Close }
Each terminal defined
by regular expression

•  Set of nonterminals
{ Start, Expr }

•  Set of productions
•  Single nonterminal on LHS
•  Sequence of terminals and

nonterminals on RHS

Op = +|-|*|/
Int = [0-9] [0-9]*
Open = <
Close = >

Start → Expr
Expr → Expr Op Expr
Expr → Int
Expr → Open Expr Close

Production Game

have a current string
start with Start nonterminal
loop until no more nonterminals

choose a nonterminal in current string
choose a production with nonterminal in LHS
replace nonterminal with RHS of production

substitute regular expressions with corresponding
strings

generated string is in language

Note: different choices produce different strings

Sample Derivation

Start
Expr
Expr Op Expr
Open Expr Close Op Expr
Open Expr Op Expr Close Op Expr
Open Int Op Expr Close Op Expr
Open Int Op Expr Close Op Int
Open Int Op Int Close Op Int
< 2 - 1 > + 1

Op = +|-|*|/
Int = [0-9] [0-9]*
Open = <
Close = >

1) Start → Expr
2) Expr → Expr Op Expr
3) Expr → Int
4) Expr → Open Expr Close

Parse Tree

•  Internal Nodes: Nonterminals
•  Leaves: Terminals
•  Edges:

•  From Nonterminal of LHS of production
•  To Nodes from RHS of production

•  Captures derivation of string

Parse Tree for <2-1>+1
Start

Expr

Expr Expr Op
+ Open

<
Close

>
Expr

Int
1

Op
-

Expr

Int
2

Expr

Int
1

Ambiguity in Grammar

Grammar is ambiguous if there are multiple derivations
(therefore multiple parse trees) for a single string

Derivation and parse tree usually reflect semantics of

the program

Ambiguity in grammar often reflects ambiguity in
semantics of language

(which is considered undesirable)

Ambiguity Example

Start

Expr

Expr Expr Op
+

Expr Expr Op
-

Int
2

Int
1

Int
1

Start

Expr

Expr Expr Op
-

Expr Expr Op
+

Int
1

Int
1

Int
2

Two parse trees for 2-1+1

Tree corresponding
to <2-1>+1

Tree corresponding
to 2-<1+1>

Eliminating Ambiguity

Solution: hack the grammar

Conceptually, makes all operators associate to left

Original Grammar
Start → Expr
Expr → Expr Op Expr
Expr → Int
Expr → Open Expr Close

Hacked Grammar
Start → Expr
Expr → Expr Op Int
Expr → Int
Expr → Open Expr Close

Parse Trees for Hacked Grammar

Start

Expr

Expr Op
+

Expr Op
-

Int
2

Int
1

Int
1

Start

Expr

Expr Expr Op
-

Expr Expr Op
+

Int
1

Int
1

Int
2

Only one parse tree for 2-1+1!

Valid parse tree No longer valid parse tree

Precedence Violations

•  All operators associate to left
•  Violates precedence of * over +

•  2-3*4 associates like <2-3>*4 Start

Expr

Expr Op
*

Expr Op
-

Int
2

Int
3

Int
4

Parse tree for
2-3*4

Hacking Around Precedence

Original Grammar
Op = +|-|*|/
Int = [0-9] [0-9]*
Open = <
Close = >

Start → Expr
Expr → Expr Op Int
Expr → Int
Expr → Open Expr Close

Hacked Grammar
AddOp = +|-
MulOp = *|/
Int = [0-9] [0-9]*
Open = <
Close = >
Start → Expr
Expr → Expr AddOp Term
Expr → Term
Term → Term MulOp Num
Term → Num
Num → Int
Num → Open Expr Close

Parse Tree Changes

Start

Expr

Expr Op
*

Expr Op
-

Int
2

Int
3

Int
4

Old parse tree
for 2-3*4 Start

Expr

Expr AddOp
-

Term

New parse tree
for 2-3*4

Term

Term MulOp
*

Num

Int
4

Num

Int
2

Num

Int
3

General Idea

•  Group Operators into Precedence Levels
•  * and / are at top level, bind strongest
•  + and - are at next level, bind next strongest

•  Nonterminal for each Precedence Level
•  Term is nonterminal for * and /
•  Expr is nonterminal for + and -

•  Can make operators left or right associative
within each level

•  Generalizes for arbitrary levels of precedence

Parser
•  Converts program into a parse tree
•  Can be written by hand
•  Or produced automatically by parser generator

•  Accepts a grammar as input
•  Produces a parser as output

•  Practical problem
•  Parse tree for hacked grammar is complicated
•  Would like to start with more intuitive parse tree

Solution

•  Abstract versus Concrete Syntax
•  Abstract syntax corresponds to “intuitive” way

of thinking of structure of program
• Omits details like superfluous keywords that

are there to make the language
unambiguous

• Abstract syntax may be ambiguous
•  Concrete Syntax corresponds to full grammar

used to parse the language
•  Parsers are often written to produce abstract

syntax trees.

Abstract Syntax Trees

•  Start with intuitive but ambiguous grammar
•  Hack grammar to make it unambiguous

•  Concrete parse trees
•  Less intuitive

•  Convert concrete parse trees to abstract syntax
trees
•  Correspond to intuitive grammar for language
•  Simpler for program to manipulate

Example

Intuitive but Ambiguous
Grammar

Op = *|/|+|-
Int = [0-9] [0-9]*
Start → Expr
Expr → Expr Op Expr
Expr → Int

Hacked Unambiguous
Grammar

AddOp = +|-
MulOp = *|/
Int = [0-9] [0-9]*
Open = <
Close = >
Start → Expr
Expr → Expr AddOp Term
Expr → Term
Term → Term MulOp Num
Term → Num
Num → Int
Num → Open Expr Close

Concrete parse
tree

for <2-3>*4

Start

Expr

Expr Op
*

Expr
Op
- Int

2

Expr

Int
4

Expr

Int
3

Abstract syntax
tree

for <2-3>*4

•  Uses intuitive
grammar

•  Eliminates superfluous
terminals
•  Open
•  Close

Start

Expr

Expr AddOp
-

Term

Term

Term MulOp
*

Num

Int
4

Num

Int
2

Num

Int
3

Start

Expr

Expr Op
*

Op
-

Int
2

Int
4

Int
3

Start

Expr

Expr Op
*

Expr
Op
- Int

2

Expr

Int
4

Expr

Int
3

Abstract parse tree
for <2-3>*4

Further simplified
abstract syntax

tree
for <2-3>*4

Summary

•  Lexical and Syntactic Levels of Structure
•  Lexical – regular expressions and automata
•  Syntactic – grammars

•  Grammar ambiguities
•  Hacked grammars
•  Abstract syntax trees

•  Generation versus Recognition Approaches
•  Generation more convenient for specification
•  Recognition required in implementation

Handling If Then Else

Start → Stat
Stat → if Expr then Stat else Stat
Stat → if Expr then Stat
Stat → ...

Parse Trees

•  Consider Statement if e1 then if e2 then s1 else s2

Stat

if Expr Stat

if Expr Stat else e1

e2

Stat

s1 s2

if Expr

Stat

if Expr Stat else

e2

e1

Stat

s1

s2

Two Parse Trees

Which is
correct?

then

then

then

Alternative Readings

•  Parse Tree Number 1
if e1

if e2 s1
else s2

•  Parse Tree Number 2
if e1

if e2 s1
 else s2

Grammar is ambiguous

Hacked Grammar
Goal → Stat
Stat → WithElse
Stat → LastElse
WithElse → if Expr then WithElse else WithElse
WithElse → <statements without if then or if then else>
LastElse → if Expr then Stat
LastElse → if Expr then WithElse else LastElse

Hacked Grammar

•  Basic Idea: control carefully where an if without
an else can occur
•  Either at top level of statement
•  Or as very last in a sequence of if then else if

then ... statements

Grammar Vocabulary

•  Leftmost derivation
•  Always expands leftmost remaining

nonterminal
•  Similarly for rightmost derivation

•  Sentential form
•  Partially or fully derived string from a step in

valid derivation
•  0 + Expr Op Expr
•  0 + Expr - 2

Defining a Language

•  Grammar
•  Generative approach
•  All strings that grammar generates (How many are

there for grammar in previous example?)
•  Automaton

•  Recognition approach
•  All strings that automaton accepts

•  Different flavors of grammars and automata
•  In general, grammars and automata correspond

Regular Languages

•  Automaton Characterization
•  (S,A,F,s0,sF)
•  Finite set of states S
•  Finite Alphabet A
•  Transition function F : S ×A → S
•  Start state s0

•  Final states sF

•  Lanuage is set of strings accepted by Automaton

Regular Languages

•  Regular Grammar Characterization
•  (T,NT,S,P)
•  Finite set of Terminals T
•  Finite set of Nonterminals NT
•  Start Nonterminal S (goal symbol, start

symbol)
•  Finite set of Productions P: NT → T U NT U T

NT
•  Language is set of strings generated by grammar

Grammar and Automata
Correspondence

Grammar
Regular Grammar

Context-Free Grammar
Context-Sensitive Grammar

Automaton
Finite-State Automaton
Push-Down Automaton

Turing Machine

Context-Free Grammars

•  Grammar Characterization
•  (T,NT,S,P)
•  Finite set of Terminals T
•  Finite set of Nonterminals NT
•  Start Nonterminal S (goal symbol, start

symbol)
•  Finite set of Productions P: NT → (T | NT)*

•  RHS of production can have any sequence of
terminals or nonterminals

Push-Down Automata

•  DFA Plus a Stack
•  (S,A,V, F,s0,sF)
•  Finite set of states S
•  Finite Input Alphabet A, Stack Alphabet V
•  Transition relation F : S ×(A U{ε})×V → S × V*
•  Start state s0

•  Final states sF

•  Each configuration consists of a state, a stack,
and remaining input string

CFG Versus PDA

•  CFGs and PDAs are of equivalent power
•  Grammar Implementation Mechanism:

•  Translate CFG to PDA, then use PDA to parse
input string

•  Foundation for bottom-up parser generators

Context-Sensitive Grammars and
Turing Machines

•  Context-Sensitive Grammars Allow Productions to
Use Context
•  P: (T.NT)+ → (T.NT)*

•  Turing Machines Have
•  Finite State Control
•  Two-Way Tape Instead of A Stack

