
Page 1 of 8

MIT 6.035 Spring 2011 Quiz 1 (100 points)

Your Full Name Here:

Your Athena ID Here:

1. (5 points) Write a regular expression for the language L = {0n1m | (n + m) is even}.

2. (20 points) Let the alphabet ∑ ={0, 1}.

(a) (5 points) Write a regular expression for the language of all strings over ∑ that contain the contiguous
substring 11.

(b) (5 points) Write a regular expression for the language of all strings over ∑ that do not contain the
contiguous substring 11.

Page 2 of 8

(c) (5 points) Give a non-deterministic finite automaton (NFA) for the language of all strings over ∑ that
contain the contiguous substring 11.

(d) (5 points) Give a non-deterministic finite automaton (NFA) for the language of all strings over ∑ that
don’t contain the contiguous substring 11.

Page 3 of 8

3. (10 points)

(a) (5 points) Give a non-deterministic finite automaton (NFA) for the language L = (010 | 01)*. The
NFA must contain at most 3 states. (Hint: draw an NFA with 4 states, then optimize).

(b) (5 points) Give a deterministic finite automaton for the language L.

Page 4 of 8

4. (30 points)

Consider the following grammar:

 S → L = R

 L → *R | id

 R → L

You can think of L and R as standing for l-value and r-value, respectively. * is the dereference operator
or indirection operator in C-like languages.

A shift-reduce parser can perform the following sequence of actions to accept the string “*id = id”.

 shift » shift » reduce » reduce » reduce » shift » shift » reduce » reduce » reduce » accept

(a) (10 points) Give a sequence of actions that a shift-reduce parser can take to accept the string “id = id”.

(b) (10 points) Give a sequence of actions that a shift-reduce parser can take to accept the string “*id =
*id”.

(c) (10 points) Is the grammar ambiguous? Why or why not?

Page 5 of 8

5. (15 points)

Consider the following grammar:

 S → if E then S else S | begin S L | print E | ε

 L → end | ; S L

 E → num = num

The goal is to write a recursive-descent parser for the grammar. You are given the following L() and E()
functions. Your job is to write the S() function on the next page.

 L() {

 if (token = end) {

 match(end);

 } else if (token = ;) {

 match(;); S(); L();

} else {

 throw SyntaxError;

}

 }

 E() {

 if (token = num) {

 match(num); match(=); match(num);

 } else {

 throw SyntaxError;

 }

 }

Page 6 of 8

S() {

 if (token = if) {

 match(if); E(); match(then); S();

} else if (token = begin) {

 match(begin); S(); L();

} else if (token = print) {

 Match(print); E();

} else {

 /* empty string */

}

}

Page 7 of 8

6. (20 points)

The following is a code snippet of legal-01.dcf:

 class Program {

 int A[100];

 int length;

 void main() {

 int temp;

 length = 100;

 callout(“srandom”, 17);

 for i = 0, length {

 temp = callout(“random”);

 A[i] = temp;

 }

 /* <HERE> */

 }

 }

What should the symbol tables look like at <HERE>, considering the semantics of the Decaf language?
Complete the symbol tables on the next page in the similar way to the symbol tables presented at Lecture
5. (Hint: note that the Decaf language is different from the language presented at Lecture 5).

Page 8 of 8

