
Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science

6.035, Spring 2013 Handout – Dataflow Optimizations Assignment Tuesday, Mar 19

DUE: Thursday, Apr 4, 9:00 pm

For this part of the project, you will add dataflow optimizations to your compiler. At the very
least, you must implement global common subexpression elimination. The other optimizations

listed below are optional. You may also wait until the next project to implement them if you are
going to; there is no requirement to implement other dataflow optimizations in this project. We
list them here as suggestions since past winners of the compiler derby typically implement each of
these optimizations in some form. You are free to implement any other optimizations you wish.
Note that you will be implementing register allocation for the next project, so you don’t need to
concern yourself with it now.

Global CSE (Common Subexpression Elimination): Identification and elimination of redun-
dant expressions using the algorithm described in lecture (based on available-expression anal-
ysis). See §8.3 and §13.1 of the Whale book, §10.6 and §10.7 in the Dragon book, and §17.2
in the Tiger book.

Global Constant Propagation and Folding: Compile-time interpretation of expressions whose
operands are compile time constants. See the algorithm described in §12.1 of the Whale book.

Global Copy Propagation: Given a “copy” assignment like x = y , replace uses of x by y when
legal (the use must be reached by only this def, and there must be no modification of y on
any path from the def to the use). See §12.5 of the Whale book and §10.7 of the Dragon
book.

Loop-invariant Code Motion (code hoisting): Moving invariant code from within a loop to
a block prior to that loop. See §13.2 of the Whale book and §10.7 of the Dragon book.

Unreachable Code Elimination: Unreachable code elimination is the conversion of constant
conditional branches to equivalent unconditional branches, followed by elimination of un-
reachable code. See §18.1 of the Whale book and §9.9 of the Dragon book.

Dead Code Elimination: Dead code elimination is the detection and elimination of code which
computes values that are not subsequently used. This is especially useful as a post-pass to
constant propagation, CSE, and copy propagation. See the §18.10 of the Whale book and
§10.2 of the Dragon book.

The following are not generally considered dataflow optimizations. However, they can increase the
effectiveness for the transformations listed above.

Algebraic Simplification and Reassociation: Basic algebraic simplifications described in class.
This includes simplifying the following rules:

a+ 0 ⇒ a

1



a− 0 ⇒ a

a ∗ 1 ⇒ a

b == true ⇒ b

b != false ⇒ b

a+ a ⇒ 2 ∗ a

etc

You may find it useful to canonicalize expression orders, especially if you choose to implement
CSE. See §12.3 of the Whale book and §10.3 of the Dragon book.

“Peephole” optimizations: Local manipulation of generated code. Many possibilities for peep-
hole optimization exist. See chapter 18 of the Whale book and §9.9 of the Dragon book for
ideas. Peephole optimization is a broad category. If you decide to attack it, talk with your
TA in advance about what you are planning to do.

Inline Expansion of Calls: Replacement of a call to procedure P by inline code derived from the
body of p. This can also include the conversion of tail-recursive calls to iterative loops. See
§15.1 and §15.2 of the Whale book.

You will want to think carefully about the order in which optimizations are performed. You may
want to perform some optimizations more than once.

All optimizations (except inline expansion of calls) should be done at the level of a single procedure.
Be careful that your optimizations do not introduce bugs in the generated code or break any
previously-implemented phase of your compiler. Needless to say, it would be foolish not to do
regression testing using your existing test cases. Do not underestimate the difficulty of debugging

this part of the project.

As in the code generation project, your generated code must include instructions to perform the
runtime checks listed in the language specification. It is desirable to optimize these checks whenever
possible (e.g., CSE can be used to eliminate array bounds tests). Note that the optimized
program must report a runtime error for exactly those program inputs for which the corresponding
unoptimized program would report a runtime error (and the runtime error message must be the
same in both cases). However, we allow the optimized program to report a runtime error earlier
than it might have been reported in the unoptimized program.

What to Hand In

Follow the directions given in project overview handout when writing up your project. For the
written portion, make sure to include a description of every optimization you implement. Show
clear examples of IR excerpts (and x86-64 excerpts, if relevant) detailing what your optimizations do.
You should also include a discussion of how you determined the order in which your optimizations
are performed.

Hand in your projects by clicking the ’submit’ button on the course website. There is no need to
e-mail the staff any part of your submission. As usual, project writeups should be included
in the ’doc’ folder of your repository.

2



Your compiler’s command line interface must provide the following interface for turning on each
optimization individually. Something similar should be provided for every optimization you imple-
ment. Document the names given to each optimization not specified here.

• --opt=cse — turns on common subexpression elimination only

• --opt=cp — turns on copy propagation optimization only

• --opt=all — turns on all optimizations

This is the interface provided by CLI.opts / optnames facility in the Java and Scala skeletons. See
the source for more details. A similar mechanism is provided in the Haskell skeleton. For the full
command-line specification, see the project overview handout.

You should be able to run your compiler from the command line with:

./run.sh --target=assembly <filename> # no optimizations

./run.sh --target=assembly --opt=all <filename> # all optimizations

Your compiler should then write a x86-64 assembly listing to standard output.

Test Cases

Dataflow test cases have been pushed to the tests repository; pull from it at your leisure. Your grade
will be determined by producing correct code and how well your compiler performs the required
dataflow optimization (CSE) for the provided tests and for a set of hidden tests.

Note that for this project, the tests only test correctness. Your grade is based on 1)
correctness, 2) CSE optimization implementation, and 3) writeup.

3


