
Massachusetts Institute of Technology

Department of Electrical Engineering and Computer Science

6.035, Spring 2013 Handout — Decaf Language Thursday, Feb 7

The project for the course is to write a compiler for a language called Decaf. Decaf is a simple
imperative language similar to C or Pascal.

1 Lexical Considerations

All Decaf keywords are lowercase. Keywords and identifiers are case-sensitive. For example, if is a
keyword, but IF is an identifier; foo and Foo are two different identifiers referring to two distinct
variables or methods.

The reserved words are:

boolean break callout continue else false for while if int return true void

Comments are started by // and are terminated by the end of the line.

White space may appear between any lexical tokens. White space is defined as one or more spaces,
tabs, line-break characters, and comments.

Keywords and identifiers must be separated by white space, or a token that is neither a keyword
nor an identifier. For example, thisfortrue is a single identifier, not three distinct keywords. If
a sequence begins with an alphabetic character or an underscore, then it and the longest sequence
of characters following it forms a token.

String literals are composed of 〈char〉s enclosed in double quotes. A character literal consists of a
〈char〉 enclosed in single quotes.

Numbers in Decaf are 64 bit signed. That is, decimal values between 9223372036854775808 and
9223372036854775807. If a sequence begins with 0x, then these first two characters and the longest
sequence of characters drawn from [0-9a-fA-F] form a hexadecimal integer literal. If a sequence
begins with a decimal digit (but not 0x), then the longest prefix of decimal digits forms a decimal
integer literal. Note that range checking is not performed during parsing. A long sequence of digits
(e.g. 123456789123456789123) is still scanned as a single token.

A 〈char〉 is any printable ASCII character (ASCII values between decimal value 32 and 126) other
than quote ("), single quote (’), or backslash (\), plus the 2-character sequences “\"” to denote
quote, “\’” to denote single quote, “\\” to denote backslash, “\t” to denote literal tab, or “\n”
to denote newline.

1

2 Reference Grammar

Meta-notation:

〈foo〉 means foo is a nonterminal.
foo (in bold font) means that foo is a terminal

i.e., a token or a part of a token.
[

x

]

means zero or one occurrence of x, i.e., x is optional;

note that brackets in quotes ′[′ ′]′ are terminals.
x
∗ means zero or more occurrences of x.

x
+, a comma-separated list of one or more x’s.

{ }

large braces are used for grouping;

note that braces in quotes ′{′ ′}′ are terminals.
| separates alternatives.

〈program〉 → 〈callout decl〉∗ 〈field decl〉∗ 〈method decl〉∗

〈callout decl〉 → callout 〈id〉 ;

〈field decl〉 → 〈type〉
{

〈id〉 | 〈id〉 ′
[
′ 〈int literal〉 ′

]
′

}+
, ;

〈method decl〉 →
{

〈type〉 | void
}

〈id〉 (

[

{

〈type〉 〈id〉
}+

,

]

) 〈block〉

〈block〉 → ′{′ 〈field decl〉∗ 〈statement〉∗ ′}′

〈type〉 → int | boolean

〈statement〉 → 〈location〉 〈assign op〉 〈expr〉 ;

| 〈method call〉 ;

| if (〈expr〉) 〈block〉
[

else 〈block〉
]

| for (〈id〉 = 〈expr〉 , 〈expr〉) 〈block〉
| while (〈expr〉) 〈block〉

| return
[

〈expr〉
]

;

| break ;

| continue ;

〈assign op〉 → =

| +=

| -=

〈method call〉 → 〈method name〉 (
[

〈expr〉+,
]

)

| 〈method name〉 (
[

〈callout arg〉+,
]

)

〈method name〉 → 〈id〉

〈location〉 → 〈id〉
| 〈id〉 ′

[
′ 〈expr〉 ′

]
′

2

〈expr〉 → 〈location〉
| 〈method call〉
| 〈literal〉
| 〈expr〉 〈bin op〉 〈expr〉
| - 〈expr〉
| ! 〈expr〉
| (〈expr〉)

〈callout arg〉 → 〈expr〉 | 〈string literal〉

〈bin op〉 → 〈arith op〉 | 〈rel op〉 | 〈eq op〉 | 〈cond op〉

〈arith op〉 → + | - | * | / | %

〈rel op〉 → < | > | <= | >=

〈eq op〉 → == | !=

〈cond op〉 → && | ||

〈literal〉 → 〈int literal〉 | 〈char literal〉 | 〈bool literal〉

〈id〉 → 〈alpha〉 〈alpha num〉∗

〈alpha num〉 → 〈alpha〉 | 〈digit〉

〈alpha〉 → a | b | ... | z | A | B | ... | Z |

〈digit〉 → 0 | 1 | 2 | ... | 9

〈hex digit〉 → 〈digit〉 | a | b | c | d | e | f | A | B | C | D | E | F

〈int literal〉 → 〈decimal literal〉 | 〈hex literal〉

〈decimal literal〉 → 〈digit〉 〈digit〉∗

〈hex literal〉 → 0x 〈hex digit〉 〈hex digit〉∗

〈bool literal〉 → true | false

〈char literal〉 → ’ 〈char〉 ’

〈string literal〉 → " 〈char〉∗ "

3 Semantics

A Decaf program consists of a single file. A program consists of callout declarations, field declara-
tions and method declarations. Field declarations introduce variables that can be accessed globally
by all methods in the program. Method declarations introduce functions/procedures. The program
must contain a declaration for a method called main that has no parameters. Execution of a Decaf
program starts at method main.

3

3.1 Types

There are two basic types in Decaf — int and boolean. In addition, there are arrays of integers
(int [N]) and arrays of booleans (boolean [N]).

Arrays may be declared in any scope. All arrays are one-dimensional and have a compile-time
fixed size. Arrays are indexed from 0 to N − 1, where N > 0 is the size of the array. Arrays are
indexed by the usual bracket notation a[i]. Since arrays have a compile-time fixed size and cannot
be declared as parameters, there is no facility for querying the length of an array variable in Decaf.

3.2 Scope Rules

Decaf has simple and quite restrictive scope rules. All identifiers must be defined (textually) before
use. For example:

• a variable must be declared before it is used.

• a method can be called only by code appearing after its header. (Note that recursive methods
are allowed.)

There are at least two valid scopes at any point in a Decaf program: the global scope and the method
scope. The global scope consists of names of callouts, fields, and methods introduced in the top
level of the program. The method scope consists of names of variables and formal parameters
introduced in a method declaration. Additional local scopes exist within each 〈block〉 in the code;
these can come after if, while and for statements. An identifier introduced in a method scope can
shadow an identifier from the global scope. Similarly, identifiers introduced in local scopes shadow
identifiers in less deeply nested scopes, the method scope, and the global scope.

Variable names defined in the method scope or a local scope may shadow method names or callout
names in the global scope. In this case, the identifier may only be used as a variable until the
variable leaves scope.

No identifier may be defined more than once in the same scope. Thus field and method names must
all be distinct in the global scope, and local variable names and formal parameters names must be
distinct in each local scope.

3.3 Locations

Decaf has two kinds of locations: local/global scalar variables and local/global array elements.
Each location has a type. Locations of types int and boolean contain integer values and boolean
values, respectively. Locations of types int [N] and boolean [N] denote array elements.
Since arrays are statically sized in Decaf, global arrays may be allocated in the static data space
of a program and need not be allocated on the heap. Local arrays may be dynamically allocated
on the stack or statically allocated on the heap when appropriate.

Each location is initialized to a default value when it is declared. Integers have a default value
of zero, and booleans have a default value of false. Local variables must be initialized when the
declaring scope is entered. Each element of a global array is initialized when the program starts.
Each element of a local array is initialized when execution of the program enters the array’s scope.
In general, each time execution enters the scope of an array, its values must be reset to their
defaults.

4

3.4 Assignment

Assignment is only permitted for scalar values. For the types int and boolean, Decaf uses
value-copy semantics, and the assignment 〈location〉 = 〈expr〉 copies the value resulting from the
evaluation of 〈expr〉 into 〈location〉. The 〈location〉 += 〈expr〉 assignment increments the value
stored in 〈location〉 by 〈expr〉, and is only valid for both 〈location〉 and 〈expr〉 of type int. The
〈location〉 -= 〈expr〉 assignment decrements the value stored in 〈location〉 by 〈expr〉, and is only
valid for both 〈location〉 and 〈expr〉 of type int.

The 〈location〉 and the 〈expr〉 in an assignment must have the same type. For array types, 〈location〉
and 〈expr〉 must refer to a single array element which is also a scalar value.

It is legal to assign to a formal parameter variable within a method body. Such assignments affect
only the method scope.

3.5 Method Invocation and Return

Method invocation involves (1) passing argument values from the caller to the callee, (2) executing
the body of the callee, and (3) returning to the caller, possibly with a result.

Argument passing is defined in terms of assignment: the formal arguments of a method are con-
sidered to be like local variables of the method and are initialized, by assignment, to the values
resulting from the evaluation of the argument expressions. The arguments are evaluated from left
to right.

The body of the callee is then executed by executing the statements of its method body in sequence.

A method that has no declared result type can only be called as a statement, i.e., it cannot be
used in an expression. Such a method returns control to the caller when return is called (no result
expression is allowed) or when the textual end of the callee is reached.

A method that returns a result may be called as part of an expression, in which case the result of
the call is the result of evaluating the expression in the return statement when this statement is
reached. It is illegal for control to reach the textual end of a method that returns a result.

A method that returns a result may also be called as a statement. In this case, the result is ignored.

3.6 Control Statements

3.6.1 if

The if statement has the following semantics. First, the 〈expr〉 is evaluated. If the result is true,
the true block is executed. Otherwise, the else block is executed, if it exists. Since Decaf requires
that the true and false blocks be enclosed in braces, there is no ambiguity in matching an else

block with its corresponding if statement.

3.6.2 while

The while statement has the usual semantics. First, the 〈expr〉 is evaluated. If the result is false,
control exits the loop. Otherwise, the loop body is executed. If control reaches the end of the loop
body, the while statement is executed again.

5

3.6.3 for

The for statement is similar to a do loop in Fortran. The 〈id〉 is the loop index variable and must
have been declared as an integer variable in the current scope or an outer scope. Because it must be
an identifier, this means that array locations are not valid loop index variables. Before entering the
loop body, it is assigned the value of the first 〈expr〉. The second 〈expr〉 is the ending value of the
loop index variable. Each of these expressions are evaluated once, just prior to reaching the loop
for the first time. Each expression must evaluate to an integer value. The loop body is executed if
the current value of the index variable is less than the ending value. After an execution of the loop
body, the index variable in incremented by 1, and the new value is compared to the ending value
to decide if another iteration should execute.

3.7 Expressions

Expressions follow the normal rules for evaluation. In the absence of other constraints, operators
with the same precedence are evaluated from left to right. Parentheses may be used to override
normal precedence.

A location expression evaluates to the value contained by the location.

Method invocation expressions are discussed in Method Invocation and Return. Array operations
are discussed in Types. I/O related expressions are discussed in Library Callouts.

Integer literals evaluate to their integer value. Character literals evaluate to their integer ASCII
values, e.g., ’A’ represents the integer 65. (The type of a character literal is int.)

The arithmetic operators (〈arith op〉 and unary minus) have their usual meaning, as do the rela-
tional operators (〈rel op〉). % computes the remainder of dividing its operands.

Relational operators are used to compare integer expressions. The equality operators, == and !=

are defined for int and boolean types only, and can only be used to compare two expressions
having the same type. (== is “equal” and != is “not equal”).

The result of a relational operator or equality operator has type boolean.

The boolean connectives && and || are interpreted using short circuit evaluation as in Java. No
side-effects of the second operand are executed if the result of the first operand determines the
value of the whole expression (i.e., if the result is false for && or true for ||).

Operator precedence, from highest to lowest:

Operators Comments

- unary minus
! logical not

* / % multiplication, division, remainder
+ - addition, subtraction

< <= >= > relational
== != equality
&& conditional and
|| conditional or

Note that this precedence is not reflected in the reference grammar.

6

3.8 Library Callouts

Decaf includes a method for calling library callouts similar to the c language. Callouts must be
predeclared at the top of the file. The syntax (as specified in the grammar) is:

callout 〈id〉 ;

All callout functions are treated as if they return int. Once callouts have been declared, they may
be called similar to any function. The exceptions to this are that arguments to callouts may contain
string literals. This is the only use of the string literal in the decaf language. Normal
decaf methods may not contain string literals as arguments.

3.8.1 Callout Arguments

Expressions of boolean or integer type are passed as integers; string literals or expressions with
array type are passed as memory addresses. The return value of the function is passed back as
an integer. The user of a callout is responsible for ensuring that the arguments given match the
signature of the function, and that the return value is only used if the underlying library function
actually returns a value of appropriate type. Arguments are passed to the function in the system’s
standard calling convention. The compiler is not responsible for verifying that callouts

have the correct number or type of arguments.

3.8.2 Writing Library Callouts

In addition to accessing the standard C library using callout, an I/O function can be written in
C (or any other language), compiled using standard tools, linked with the runtime system, and
accessed by the callout mechanism.

7

4 Semantic Rules

These rules place additional constraints on the set of valid Decaf programs besides the constraints
implied by the grammar. A program that is grammatically well-formed and does not violate any
of the following rules is called a legal program. A robust compiler will explicitly check each of
these rules, and will generate an error message describing each violation it is able to find. A robust
compiler will generate at least one error message for each illegal program, but will generate no
errors for a legal program.

1. No identifier is declared twice in the same scope. This includes callout identifiers, which
exist in the global scope.

2. No identifier is used before it is declared.

3. The program contains a definition for a method called main that has no parameters (note
that since execution starts at method main, any methods defined after main will never be
executed).

4. The 〈int literal〉 in an array declaration must be greater than 0.

5. The number and types of arguments in a method call (non-callout) must be the same as the
number and types of the formals, i.e., the signatures must be identical.

6. If a method call is used as an expression, the method must return a result.

7. String literals and array variables may not be used as arguments to non-callout methods.
Note: a[5] is not an array variable, it is an array location

8. A return statement must not have a return value unless it appears in the body of a method
that is declared to return a value.

9. The expression in a return statement must have the same type as the declared result type
of the enclosing method definition.

10. An 〈id〉 used as a 〈location〉 must name a declared local/global variable or formal parameter.

11. For all locations of the form 〈id〉[〈expr〉]

(a) 〈id〉 must be an array variable, and

(b) the type of 〈expr〉 must be int.

12. The 〈expr〉 in an if or a while statement must have type boolean.

13. The operands of 〈arith op〉s and 〈rel op〉s must have type int.

14. The operands of 〈eq op〉s must have the same type, either int or boolean.

15. The operands of 〈cond op〉s and the operand of logical not (!) must have type boolean.

16. The 〈location〉 and the 〈expr〉 in an assignment, 〈location〉 = 〈expr〉, must have the same type.

17. The 〈location〉 and the 〈expr〉 in an incrementing/decrementing assignment, 〈location〉 += 〈expr〉
and 〈location〉 -= 〈expr〉, must be of type int.

18. The initial 〈expr〉 and the ending 〈expr〉 of for must have type int.

19. All break and continue statements must be contained within the body of a for or a while.

8

5 Run Time Checking

In addition to the constraints described above, which are statically enforced by the compiler’s
semantic checker, the following constraints are enforced dynamically. The compiler’s code generator
must emit code to perform these checks; violations are discovered at run-time.

1. The subscript of an array must be in bounds.

2. Control must not fall off the end of a method that is declared to return a result.

When a run-time error occurs, an appropriate error message is output to the terminal and the
program terminates. If the subscript of an array is found to be out of bounds, the program must
terminate with exit value −1. If control falls off the end of a method that is declared to return
a result, the program must terminate with exit value −2. The error messages output should be
helpful to the programmer trying to find the problem in the source program.

9

