
Unoptimized Code Generation

Big Picture

•  Starting point - AST
•  Intermediate point – CFG (control flow graph)
•  Ending point – Generated Assembly Code

•  Emphasis on UNOPTIMIZED
•  Do simplest possible thing for now
•  Will treat optimizations separately

Control Flow Graph
into add(n, k) {

 s = 0; a = 4; i = 0;
 if (k == 0)
 b = 1;
 else
 b = 2;
 while (i < n) {
 s = s + a*b;
 i = i + 1;
 }
 return s;

}

s = 0;
a = 4;
i = 0;

k == 0

b = 1; b = 2;

i < n

s = s + a*b;
i = i + 1;

return s;

Control Flow Graph

•  Nodes Represent Computation
– Each Node is a Basic Block
– Basic Block is a Sequence of Instructions with

•  No Branches Out Of Middle of Basic Block
•  No Branches Into Middle of Basic Block
•  Basic Blocks should be maximal

– Execution of basic block starts with first instruction
–  Includes all instructions in basic block

•  Edges Represent Control Flow

AST to CFG for If Then Else
Source Code

if (condition) {
 code for then
} else {
 code for else
}

CFG for condition

CFG for else CFG for then

no op if

AST for
condition AST for then AST for else

AST

CFG

AST to CFG for If Then
Source Code

if (condition) {
 code for then
}

CFG for condition

CFG for then

no op if

AST for
condition AST for then

AST

CFG

AST

AST to CFG for While
Source Code

while (condition) {
 code for loop body
}

CFG for condition

CFG for loop body

no op while

AST for
condition AST for loop body

CFG

AST

AST to CFG for Statements
Source Code
code for S1;
 code for S2

CFG for S1

seq

AST for S1 AST for S2

CFG

CFG for S2

Basic Block Construction

s = 0;

a = 4;

•  Start with instruction control-flow graph
•  Visit all edges in graph
•  Merge adjacent nodes if

– Only one edge from first node
– Only one edge into second node

s = 0;
a = 4;

s = 0;

a = 4;

i = 0;

k == 0

b = 1; b = 2;

i < n

s = s + a*b;

i = i + 1;

return s;

s = 0;
a = 4;

s = 0;

a = 4;

i = 0;

k == 0

b = 1; b = 2;

i < n

s = s + a*b;

i = i + 1;

return s;

s = 0;
a = 4;
i = 0;

s = 0;

a = 4;

i = 0;

k == 0

b = 1; b = 2;

i < n

s = s + a*b;

i = i + 1;

return s;

s = 0;
a = 4;
i = 0;

k == 0

s = 0;

a = 4;

i = 0;

k == 0

b = 1; b = 2;

i < n

s = s + a*b;

i = i + 1;

return s;

s = 0;
a = 4;
i = 0;

k == 0

b = 2;

s = 0;

a = 4;

i = 0;

k == 0

b = 1; b = 2;

i < n

s = s + a*b;

i = i + 1;

return s;

s = 0;
a = 4;
i = 0;

k == 0

b = 2;

i < n

s = 0;

a = 4;

i = 0;

k == 0

b = 1; b = 2;

i < n

s = s + a*b;

i = i + 1;

return s;

s = 0;
a = 4;
i = 0;

k == 0

b = 2;

i < n

s = s + a*b;

s = 0;

a = 4;

i = 0;

k == 0

b = 1; b = 2;

i < n

s = s + a*b;

i = i + 1;

return s;

s = 0;
a = 4;
i = 0;

k == 0

b = 2;

i < n

s = s + a*b;
i = i + 1;

s = 0;

a = 4;

i = 0;

k == 0

b = 1; b = 2;

i < n

s = s + a*b;

i = i + 1;

return s;

s = 0;
a = 4;
i = 0;

k == 0

b = 2;

i < n

s = s + a*b;
i = i + 1;

s = 0;

a = 4;

i = 0;

k == 0

b = 1; b = 2;

i < n

s = s + a*b;

i = i + 1;

return s;

s = 0;
a = 4;
i = 0;

k == 0

b = 2;

i < n

s = s + a*b;
i = i + 1; return s;

s = 0;

a = 4;

i = 0;

k == 0

b = 1; b = 2;

i < n

s = s + a*b;

i = i + 1;

return s;

s = 0;
a = 4;
i = 0;

k == 0

b = 1; b = 2;

i < n

s = s + a*b;
i = i + 1; return s;

s = 0;

a = 4;

i = 0;

k == 0

b = 1; b = 2;

i < n

s = s + a*b;

i = i + 1;

return s;

s = 0;
a = 4;
i = 0;

k == 0

b = 1; b = 2;

i < n

s = s + a*b;
i = i + 1; return s;

s = 0;

a = 4;

i = 0;

k == 0

b = 1; b = 2;

i < n

s = s + a*b;

i = i + 1;

return s;

s = 0;
a = 4;
i = 0;

k == 0

b = 1; b = 2;

i < n

s = s + a*b;
i = i + 1; return s;

Program Points, Split and Join
Points

•  One program point before and after each statement in
program

•  Split point has multiple successors – conditional
branch statements only split points

•  Merge point has multiple predecessors
•  Each basic block

– Either starts with a merge point or its predecessor
ends with a split point

– Either ends with a split point or its successor starts
with a merge point

Motivation For Short-Circuit
Conditionals

Following program searches array for 0 element

int i = 0;
while (i < n && a[i] != 0) {
 i = i + 1;
}

If i < n is false, should you evaluate a[i] != 0?

Short-Circuit Conditionals
•  In program, conditionals have a condition

written as a boolean expression
((i < n) && (v[i] != 0)) || i > k)

•  Semantics say should execute only as much as
required to determine condition
– Evaluate (v[i] != 0) only if (i < n) is true
– Evaluate i > k only if ((i < n) && (v[i] != 0)) is

false
•  Use control-flow graph to represent this short-

circuit evaluation

Short-Circuit Conditionals
while (i < n && v[i] != 0) {

 i = i+1;
}

entry

exit

<

jl xxx

cmp %r10, %r11

mov %r11, i

<

jl yyy

cmp %r10, %r11

add $1, %r11

mov i, %r11

More Short-Circuit Conditionals
if (a < b || c != 0) {

 i = i+1;
}

entry

exit

<

jl xxx

cmp %r10, %r11

<

jne yyy

cmp %r10, %r11
mov %r11, i

add $1, %r11

mov i, %r11

Routines for Destructuring Program
Representation

destruct(n)
 generates lowered form of structured code represented by n
 returns (b,e) - b is begin node, e is end node in destructed form

shortcircuit(c, t, f)

 generates short-circuit form of conditional represented by c
 if c is true, control flows to t node
 if c is false, control flows to f node
 returns b - b is begin node for condition evaluation

new kind of node - nop node

Destructuring Seq Nodes
destruct(n)

 generates lowered form of structured code represented by n
 returns (b,e) - b is begin node, e is end node in destructed form
 if n is of the form seq x y

seq

x y

Destructuring Seq Nodes
destruct(n)

 generates lowered form of structured code represented by n
 returns (b,e) - b is begin node, e is end node in destructed form
 if n is of the form seq x y
 1: (bx,ex) = destruct(x);

seq

x y

bx

ex

Destructuring Seq Nodes
destruct(n)

 generates lowered form of structured code represented by n
 returns (b,e) - b is begin node, e is end node in destructed form
 if n is of the form seq x y
 1: (bx,ex) = destruct(x); 2: (by,ey) = destruct(y);

seq

x y

bx

ex by

ey

Destructuring Seq Nodes
destruct(n)

 generates lowered form of structured code represented by n
 returns (b,e) - b is begin node, e is end node in destructed form
 if n is of the form seq x y
 1: (bx,ex) = destruct(x); 2: (by,ey) = destruct(y);
 3: next(ex) = by;

seq

x y

bx

ex by

ey

Destructuring Seq Nodes
destruct(n)

 generates lowered form of structured code represented by n
 returns (b,e) - b is begin node, e is end node in destructed form
 if n is of the form seq x y
 1: (bx,ex) = destruct(x); 2: (by,ey) = destruct(y);
 3: next(ex) = by; 4: return (bx, ey);

seq

x y

bx

ex by

ey

Destructuring If Nodes
destruct(n)

 generates lowered form of structured code represented by n
 returns (b,e) - b is begin node, e is end node in destructed form
 if n is of the form if c x y

if
c y x

Destructuring If Nodes
destruct(n)

 generates lowered form of structured code represented by n
 returns (b,e) - b is begin node, e is end node in destructed form
 if n is of the form if c x y
 1: (bx,ex) = destruct(x);

if
c y

bx ex

x

Destructuring If Nodes
destruct(n)

 generates lowered form of structured code represented by n
 returns (b,e) - b is begin node, e is end node in destructed form
 if n is of the form if c x y
 1: (bx,ex) = destruct(x); 2: (by,ey) = destruct(y);

if
c y

bx ex

x by ey

Destructuring If Nodes
destruct(n)

 generates lowered form of structured code represented by n
 returns (b,e) - b is begin node, e is end node in destructed form
 if n is of the form if c x y
 1: (bx,ex) = destruct(x); 2: (by,ey) = destruct(y);
 3: e = new nop;

if
c y

bx ex

e

x by ey

Destructuring If Nodes
destruct(n)

 generates lowered form of structured code represented by n
 returns (b,e) - b is begin node, e is end node in destructed form
 if n is of the form if c x y
 1: (bx,ex) = destruct(x); 2: (by,ey) = destruct(y);
 3: e = new nop; 4: next(ex) = e; 5: next(ey) = e;

if
c y

bx ex

e

x by ey

Destructuring If Nodes
destruct(n)

 generates lowered form of structured code represented by n
 returns (b,e) - b is begin node, e is end node in destructed form
 if n is of the form if c x y
 1: (bx,ex) = destruct(x); 2: (by,ey) = destruct(y);
 3: e = new nop; 4: next(ex) = e; 5: next(ey) = e;
 6: bc = shortcircuit(c, bx, by);

if
c y

bc

bx ex

e

x by ey

Destructuring If Nodes
destruct(n)

 generates lowered form of structured code represented by n
 returns (b,e) - b is begin node, e is end node in destructed form
 if n is of the form if c x y
 1: (bx,ex) = destruct(x); 2: (by,ey) = destruct(y);
 3: e = new nop; 4: next(ex) = e; 5: next(ey) = e;
 6: bc = shortcircuit(c, bx, by); 7: return (bc, e);

if
c y

bc

bx ex

e

x by ey

Destructuring While Nodes
destruct(n)

 generates lowered form of structured code represented by n
 returns (b,e) - b is begin node, e is end node in destructed form
 if n is of the form while c x

while

c x

Destructuring While Nodes
destruct(n)

 generates lowered form of structured code represented by n
 returns (b,e) - b is begin node, e is end node in destructed form
 if n is of the form while c x
 1: e = new nop;

while

c x

e

Destructuring While Nodes
destruct(n)

 generates lowered form of structured code represented by n
 returns (b,e) - b is begin node, e is end node in destructed form
 if n is of the form while c x
 1: e = new nop; 2: (bx,ex) = destruct(x);

while

c x

e

bx

ex

Destructuring While Nodes
destruct(n)

 generates lowered form of structured code represented by n
 returns (b,e) - b is begin node, e is end node in destructed form
 if n is of the form while c x
 1: e = new nop; 2: (bx,ex) = destruct(x);
 3: bc = shortcircuit(c, bx, e);

while

c x

bc

e

bx

ex

Destructuring While Nodes
destruct(n)

 generates lowered form of structured code represented by n
 returns (b,e) - b is begin node, e is end node in destructed form
 if n is of the form while c x
 1: e = new nop; 2: (bx,ex) = destruct(x);
 3: bc = shortcircuit(c, bx, e); 4: next(ex) = bc;

while

c x

bc

e

bx

ex

Destructuring While Nodes
destruct(n)

 generates lowered form of structured code represented by n
 returns (b,e) - b is begin node, e is end node in destructed form
 if n is of the form while c x
 1: e = new nop; 2: (bx,ex) = destruct(x);
 3: bc = shortcircuit(c, bx, e); 4: next(ex) = bc; 5: return (bc, e);

while

c x

bc

e

bx

ex

Shortcircuiting And Conditions
shortcircuit(c, t, f)

 generates shortcircuit form of conditional represented by c
 returns b - b is begin node of shortcircuit form
 if c is of the form c1 && c2

c1 && c2

Shortcircuiting And Conditions
shortcircuit(c, t, f)

 generates shortcircuit form of conditional represented by c
 returns b - b is begin node of shortcircuit form
 if c is of the form c1 && c2

 1: b2 = shortcircuit(c2, t, f);

c1 && c2

f

b2

t

Shortcircuiting And Conditions
shortcircuit(c, t, f)

 generates shortcircuit form of conditional represented by c
 returns b - b is begin node of shortcircuit form
 if c is of the form c1 && c2

 1: b2 = shortcircuit(c2, t, f); 2: b1 = shortcircuit(c1, b2, f);

c1 && c2

b1

f

b2

t

Shortcircuiting And Conditions
shortcircuit(c, t, f)

 generates shortcircuit form of conditional represented by c
 returns b - b is begin node of shortcircuit form
 if c is of the form c1 && c2

 1: b2 = shortcircuit(c2, t, f); 2: b1 = shortcircuit(c1, b2, f);
 3: return (b1);

c1 && c2

b1

f

b2

t

Shortcircuiting Or Conditions
shortcircuit(c, t, f)

 generates shortcircuit form of conditional represented by c
 returns b - b is begin node of shortcircuit form
 if c is of the form c1 || c2

c1 || c2

Shortcircuiting Or Conditions
shortcircuit(c, t, f)

 generates shortcircuit form of conditional represented by c
 returns b - b is begin node of shortcircuit form
 if c is of the form c1 || c2

 1: b2 = shortcircuit(c2, t, f);

c1 || c2

f

b2 t

Shortcircuiting Or Conditions
shortcircuit(c, t, f)

 generates shortcircuit form of conditional represented by c
 returns b - b is begin node of shortcircuit form
 if c is of the form c1 || c2

 1: b2 = shortcircuit(c2, t, f); 2: b1 = shortcircuit(c1, t, b2);

c1 || c2

b1

f

b2 t

Shortcircuiting Or Conditions
shortcircuit(c, t, f)

 generates shortcircuit form of conditional represented by c
 returns b - b is begin node of shortcircuit form
 if c is of the form c1 || c2

 1: b2 = shortcircuit(c2, t, f); 2: b1 = shortcircuit(c1, t, b2);
 3: return (b1);

c1 || c2

b1

f

b2 t

Shortcircuiting Not Conditions
shortcircuit(c, t, f)

 generates shortcircuit form of conditional represented by c
 returns b - b is begin node of shortcircuit form
 if c is of the form ! c1

 1: b = shortcircuit(c1, f, t); return(b);

b

f t

! c1

Computed Conditions
shortcircuit(c, t, f)

 generates shortcircuit form of conditional represented by c
 returns b - b is begin node of shortcircuit form
 if c is of the form e1 < e2

 1: b = new cbr(e1 < e2, t, f); 2: return (b);

e1 < e2

e1 e2

cmp

 jl

t f

Nops In Destructured Representation

nop

while (i < n && v[i] != 0) {
 i = i+1;

}

entry

exit

<

jl xxx

cmp %r10, %r11

mov %r11, i

<

jl yyy

cmp %r10, %r11

add $1, %r11

mov i, %r11

Eliminating Nops Via Peephole
Optimization

nop

... ...

Linearizing CFG to Assembler
•  Generate labels for edge targets at branches

– Labels will correspond to branch targets
– Can use code generation patterns for this

•  Emit code for procedure entry
•  Emit code for basic blocks

– Emit code for statements/conditional expressions
– Appropriately linearized
–  Jump/conditional jumps link basic blocks together

•  Emit code for procedure exit

Overview of a modern ISA

•  Memory

•  Registers
•  ALU

•  Control

Memory

Registers ALU

Control

Overview of Computation

•  Loads data from memory into registers
•  Computes on registers
•  Stores new data back into memory
•  Flow of control determines what happens
•  Role of compiler:

– Orchestrate register usage
– Generate low-level code for interfacing with

machine

Typical Memory Layout

Global Variables
Read-only constants

Program

Heap

Dynamic

Unmapped

Text

Stack

Data

0x40 0000

0x800 0000 0000

0x0

Local variables
Temporaries
Some parameters

Concept of An Object File
•  The object file has:

–  Multiple Segments
–  Symbol Information
–  Relocation Information

•  Segments
–  Global Offset Table
–  Procedure Linkage Table
–  Text (code)
–  Data
–  Read Only Data

•  To run program, OS reads object file, builds executable
process in memory, runs process

•  We will use assembler to generate object files

•  Allocate space for global variables
(in data segment)

•  For each procedure
– Allocate space for parameters and locals (on stack)
– Generate code for procedure

• Generate procedure entry prolog
• Generate code for procedure body
• Generate procedure exit epilog

Basic Compilation Tasks

int values[20];
int sum(int n) {
 int i, t;
 i = 1;
 t = 0;
 while (i < n) {
 if (i < 20) {
 t = t + values[i];
 }
 i = i + 1;
 }
 return t;
}

i=1
t=0

i = i+1

i < n

i < 20

return t; t = t + values[i]

int values[20];
int sum(int n) {
 int i, t, temp1, temp2, temp3, temp4;
 i = 0;
 t = 0;
 temp1 = n;
 temp2 = 1;
 i = temp2;
 temp2 = 0;
 t = temp2;
 temp3 = i;
 temp4 = temp1;
 while (temp3 < temp4) {
 temp3 = i;
 temp4 = 20;
 if (temp3 < temp4) {
 temp3 = t;
 temp4 = i;
 temp4 = values[temp4];
 temp2 = temp3 + temp4;
 t = temp2;
 }
 temp3 = i;
 temp4 = 1;
 temp2 = temp3 + temp4;
 i = temp2;
 }
 temp2 = t;
 return temp2;
}

 .comm values,160,8
sum:
 //allocate for t, i, temp1, temp2, temp3, temp4
 enter $48, $0
 movq %rdi, -24(%rbp)

 //t=0
 movq $0, -8(%rbp)

 //i=0
 movq $0, -16(%rbp)

 //i = temp2 = 1
 movq $1, -32(%rbp)
 mov -32(%rbp), %rax
 movq %rax, -16(%rbp)

 //t = temp2 = 0
 movq $0, -32(%rbp) //set temp2 to 0
 mov -32(%rbp), %rax //store temp2 in %rax
 movq %rax, -8(%rbp) //load %rax to t

.BasicBlock2:
 //i < n

 //temp3 = i
 mov -16(%rbp), %rax
 movq %rax, -40(%rbp)

 //temp4 = temp1
 mov -24(%rbp), %rax
 movq %rax, -48(%rbp)

 //temp3 < temp4
 mov -48(%rbp), %rax
 cmp %rax, -40(%rbp)
 jge .BasicBlock4

.BasicBlock3:
 movq $1, -32(%rbp) //temp2 = true
 jmp .BasicBlock5 //jump to condition

.BasicBlock4:
 movq $0, -32(%rbp) //temp2 = false

.BasicBlock5:
 cmp $1, -32(%rbp) //if temp2 is true continue, false jump to return
 jne .BasicBlock12

.BasicBlock6:
 //i < 20

 //temp3 = i
 mov -16(%rbp), %rax
 movq %rax, -40(%rbp)

 //temp4 = 20
 movq $20, -48(%rbp)

 //temp3 < temp4
 mov -48(%rbp), %rax
 cmp %rax, -40(%rbp)
 jge .BasicBlock8

.BasicBlock7:
 movq $1, -32(%rbp) //temp2 = true
 jmp .BasicBlock9 //jump to condition

.BasicBlock8:
 movq $0, -32(%rbp) //temp2 = false
.BasicBlock9:
 cmp $1, -32(%rbp) //if temp2 is true fo in block, false skip
 jne .BasicBlock11

.BasicBlock10:
 //temp3 = t
 mov -8(%rbp), %rax
 movq %rax, -40(%rbp)

 //temp4 = i
 mov -16(%rbp), %rax
 movq %rax, -48(%rbp)

 cmp $0, -48(%rbp) //check if array index temp4 < 0
 jl .boundsbad0
 mov -48(%rbp), %rax
 cmp $20, %rax //check if array index temp4 >= 20
 jge .boundsbad0
 jmp .boundsgood0 //perform array access
.boundsbad0:
 mov -48(%rbp), %rdx
 mov $8, %rcx
 call .boundserror
.boundsgood0:
 //t = t + values[i] = temp3 + values[temp4]

 //array access
 mov -48(%rbp), %r10
 mov values(, %r10, 8), %rax
 movq %rax, -48(%rbp)

 //temp2 = temp3 + temp4
 mov -40(%rbp), %rax
 add -48(%rbp), %rax
 movq %rax, -32(%rbp)

 //t = temp2
 mov -32(%rbp), %rax
 movq %rax, -8(%rbp)

.BasicBlock11:
 //i = i + 1

 //temp3 = i
 mov -16(%rbp), %rax
 movq %rax, -40(%rbp)

 //temp4 = 1
 movq $1, -48(%rbp)

 //temp2 = temp3 + temp4
 mov -40(%rbp), %rax
 add -48(%rbp), %rax
 movq %rax, -32(%rbp)

 //i = temp2
 mov -32(%rbp), %rax
 movq %rax, -16(%rbp)

 jmp .BasicBlock2 //jump to beginning of while loop

.BasicBlock12:
 //return t

 //temp2 = t
 mov -8(%rbp), %rax
 movq %rax, -32(%rbp)

 //return temp2
 mov -32(%rbp), %rax
 leave
 ret

 .comm values,160,8
sum:
 //allocate for t, i, temp1, temp2, temp3, temp4
 enter $48, $0
 movq %rdi, -24(%rbp)

 //t=0
 movq $0, -8(%rbp)

 //i=0
 movq $0, -16(%rbp)

 //i = temp2 = 1
 movq $1, -32(%rbp)
 mov -32(%rbp), %rax
 movq %rax, -16(%rbp)

 //t = temp2 = 0
 movq $0, -32(%rbp) //set temp2 to 0
 mov -32(%rbp), %rax //store temp2 in %rax
 movq %rax, -8(%rbp) //load %rax to t

.BasicBlock2:
 //i < n

 //temp3 = i
 mov -16(%rbp), %rax
 movq %rax, -40(%rbp)

 //temp4 = temp1
 mov -24(%rbp), %rax
 movq %rax, -48(%rbp)

 //temp3 < temp4
 mov -48(%rbp), %rax
 cmp %rax, -40(%rbp)
 jge .BasicBlock4

.BasicBlock3:
 movq $1, -32(%rbp) //temp2 = true
 jmp .BasicBlock5 //jump to condition

.BasicBlock4:
 movq $0, -32(%rbp) //temp2 = false

.BasicBlock5:
 cmp $1, -32(%rbp) //if temp2 is true continue, false
jump to return
 jne .BasicBlock12

 .BasicBlock6:
 //i < 20

 //temp3 = i
 mov -16(%rbp), %rax
 movq %rax, -40(%rbp)

 //temp4 = 20
 movq $20, -48(%rbp)

 //temp3 < temp4
 mov -48(%rbp), %rax
 cmp %rax, -40(%rbp)
 jge .BasicBlock8

.BasicBlock7:
 movq $1, -32(%rbp) //temp2 = true
 jmp .BasicBlock9 //jump to condition

.BasicBlock8:
 movq $0, -32(%rbp) //temp2 = false
.BasicBlock9:
 cmp $1, -32(%rbp) //if temp2 is true fo in block,
false skip
 jne .BasicBlock11

.BasicBlock10:
 //temp3 = t
 mov -8(%rbp), %rax
 movq %rax, -40(%rbp)

 //temp4 = i
 mov -16(%rbp), %rax
 movq %rax, -48(%rbp)

 cmp $0, -48(%rbp) //check if array index temp4 < 0
 jl .boundsbad0
 mov -48(%rbp), %rax
 cmp $20, %rax //check if array index temp4 >=
20
 jge .boundsbad0
 jmp .boundsgood0 //perform array access
.boundsbad0:
 mov -48(%rbp), %rdx
 mov $8, %rcx
 call .boundserror

 ...boundsgood0:
 //t = t + values[i] = temp3 + values[temp4]

 //array access
 mov -48(%rbp), %r10
 mov values(, %r10, 8), %rax
 movq %rax, -48(%rbp)

 //temp2 = temp3 + temp4
 mov -40(%rbp), %rax
 add -48(%rbp), %rax
 movq %rax, -32(%rbp)

 //t = temp2
 mov -32(%rbp), %rax
 movq %rax, -8(%rbp)

.BasicBlock11:
 //i = i + 1

 //temp3 = i
 mov -16(%rbp), %rax
 movq %rax, -40(%rbp)

 //temp4 = 1
 movq $1, -48(%rbp)

 //temp2 = temp3 + temp4
 mov -40(%rbp), %rax
 add -48(%rbp), %rax
 movq %rax, -32(%rbp)

 //i = temp2
 mov -32(%rbp), %rax
 movq %rax, -16(%rbp)

 jmp .BasicBlock2 //jump to beginning of while
loop

.BasicBlock12:
 //return t

 //temp2 = t
 mov -8(%rbp), %rax
 movq %rax, -32(%rbp)

 //return temp2
 mov -32(%rbp), %rax
 leave
 ret

Allocate space for global variables
Decaf global array declaration

 int values[20];

Assembler directive (reserve space in data segment)
 .comm values,160,8

Name Size Alignment

The Call Stack
•  Arguments 1 to 6

are in:
–  %rdi, %rsi, %rdx,
–  %rcx, %r8, and %r9

%rbp
–  marks the beginning

of the current frame

%rsp
–  marks top of stack

%rax
–  return value

0(%rsp)

Return address

argument n
…

argument 7

local 1
…

local m

Previous %rbp

Variable size

0(%rbp)

-8(%rbp)

-8*n-8(%rbp)

8(%rbp)

16(%rbp)

8*n+16(%rbp)

P
re

vi
ou

s
C

ur
re

nt

parameter 1
…

parameter n

0(%rsp)
-8*(m+n)-8(%rbp)

Questions

•  Why allocate activation records on a stack?
•  Why not statically preallocate activation

records?
•  Why not dynamically allocate activation

records in the heap?

Allocate space for parameters/locals

•  Each parameter/local has its own slot on stack
•  Each slot accessed via %rbp negative offset
•  Iterate over parameter/local descriptors
•  Assign a slot to each parameter/local

•  Push base pointer (%rbp) onto stack
•  Copy stack pointer (%rsp) to base pointer (%rbp)
•  Decrease stack pointer by activation record size
•  All done by:

enter <stack frame size in bytes>, <lexical nesting level>
enter $48, $0

•  For now (will optimize later) move parameters to slots
in activation record (top of call stack)

 movq %rdi, -24(%rbp)

Generate procedure entry prologue

•  64 bit registers (16 of them)
%rax, %rbx, %rcx, %rdx, %rdi, %rsi, %rbp, %rsp,
%r8-%r15

•  Stack pointer %rsp, base pointer %rbp
•  Parameters

– First six integer/pointer parameters in
%rdi, %rsi, %rdx, %rcx, %r8, %r9

– Rest passed on the stack
•  Return value

–  64 bits or less in %rax
–  Longer return values passed on the stack

x86 Register Usage

•  Why have %rbp if also have %rsp?

•  Why not pass all parameters in registers?
•  Why not pass all parameters on stack?

•  Why not pass return value in register(s)
regardless of size?

•  Why not pass return value on stack regardless
of size?

Questions

Callee vs caller save registers

•  Registers used to compute values in procedure
•  Should registers have same value after

procedure as before procedure?
– Callee save registers (must have same value)

%rsp, %rbx, %rbp, %r12-%r15
– Caller save registers (procedure can change value)

%rax, %rcx, %rdx, %rsi, %rdi, %r8-%r11
•  Why have both kinds of registers?

•  Put return value in %rax
mov -32(%rbp), %rax

•  Undo procedure call
– Move base pointer (%rbp) to stack pointer (%rsp)
– Pop base pointer from caller off stack into %rbp
– Return to caller (return address on stack)
– All done by

leave
ret

Generate procedure call epilogue

Procedure Linkage

Standard procedure linkage
procedure p

prolog

epilog

pre-call

post-return

procedure q

prolog

epilog

Pre-call:

• Save caller-saved registers

• Set up arguments

•  Registers (1-6)

•  Stack (7-N)

Prolog:

• Push old frame pointer

• Save callee-saved registers

• Make room for parameters,
temporaries, and locals

Epilog:

• Restore callee-saved registers

• Pop old frame pointer

• Store return value

Post-return:

• Restore caller-saved registers

• Pop arguments

Generate code for procedure body
Evaluate expressions with a temp for each subexpression
 //i = i + 1
 //temp3 = i
 mov i from stack, %rax
 movq %rax, temp3 on stack

 //temp4 = 1
 mov $1, temp4 on stack

 //temp2 = temp3 + temp4
 mov temp3 from stack, %rax
 add temp4 on stack, %rax
 movq %rax, temp2 on stack

 //i = temp2
 mov temp2 on stack, %rax
 movq %rax, i on stack

Temps stored on stack

%rax as working register

Apply code generation templates
 temp = var
 temp = temp op temp
 var = temp

Generate code for procedure body
Evaluate expressions with a temp for each subexpression
 //i = i + 1
 //temp3 = i
 mov -16(%rbp), %rax
 movq %rax, -40(%rbp)

 //temp4 = 1
 mov $1, -48(%rbp)

 //temp2 = temp3 + temp4
 mov -40(%rbp), %rax
 add -48(%rbp), %rax
 movq %rax, -32(%rbp)

 //i = temp2
 mov -32(%rbp), %rax
 movq %rax, -16(%rbp)

Temps stored on stack

%rax as working register

Apply code generation templates
 temp = var
 temp = temp op temp
 var = temp

Evaluating Expression Trees
Flat List Model

•  The idea is to linearize the expression tree
•  Left to Right Depth-First Traversal of the expression tree

–  Allocate temporaries for intermediates (all the nodes of the tree)
•  New temporary for each intermediate
•  All the temporaries on the stack (for now)

•  Each expression is a single 3-addr op
–  x = y op z
–  Code generation for the 3-addr expression

•  Load y into register %rax
•  Perform op z, %rax
•  Store %rax to x

Another option
Load y into register %rax
Load z into register %r10
Perform op %r10,%rax
Store %rax to x

Issues in Lowering Expressions
•  Map intermediates to registers?

–  registers are limited
•  When the tree is large, registers may be insufficient ⇒ allocate space

in the stack

•  Very inefficient
–  too many copies
–  don’t worry, we’ll take care of them in the optimization

passes
–  keep the code generator very simple

Generate code for procedure body
Basic Ideas
•  Temps, locals, parameters all have a “home” on stack
•  When compute, use %rax as working storage
•  All subexpressions are computed into temps
•  For each computation in expression

–  Fetch first operand (on stack) into %rax
–  Apply operator to second operand (on stack) and %rax
–  Result goes back into %rax
–  Store result (in %rax) back onto stack

Generate code for procedure body
Accessing an array element
 //array access temp1 = values[temp0]
 mov array index in temp0, %r10
 mov values[array index in %r10], %rax
 movq %rax, temp1

%r10 as array index register
%rax as working register

Apply code generation template

Generate code for procedure body
Accessing an array element
 //array access temp1 = values[temp0]
 mov -48(%rbp), %r10
 mov values(, %r10, 8), %rax
 movq %rax, -48(%rbp)

%r10 as array index register
%rax as working register

Apply code generation template

Generate code for procedure body
Array bounds checks (performed before array access)
 check if array index < 0
 jl .boundsbad0
 check if array index >= array bound
 jge .boundsbad0
 jmp .boundsgood0 //perform array access
.boundsbad0:
 first parameter is array index
 second parameter is array element size
 call .boundserror
.boundsgood0:
 perform array access

Generate code for procedure body
Array bounds checks (performed before array access)
 cmp $0, -48(%rbp) //check if array index temp4 < 0
 jl .boundsbad0
 mov -48(%rbp), %rax
 cmp $20, %rax //check if array index temp4 >= 20
 jge .boundsbad0
 jmp .boundsgood0 //perform array access
.boundsbad0:
 mov -48(%rbp), %rdx
 mov $8, %rcx
 call .boundserror
.boundsgood0: //array access to values[temp4]
 mov -48(%rbp), %r10
 mov values(, %r10, 8), %rax
 movq %rax, -48(%rbp)

%rax as working register
Apply code generation template

Generate code for procedure body
Control Flow via comparisons and jumps
 //if (condition) { code } else { code }
 compute condition
 if condition not true to jump to .FalseCase
.TrueCase:
 // code for true case
 jmp .EndIf // skip else case
.FalseCase:
 // code for else case
.EndIf:
 // code for after if

Code generation template for
if then else (conditional branch)

Generate code for procedure body
Control Flow via comparisons and jumps
 //if (condition) { code } else { code }
 compute condition
 if condition not true to jump to .ConditionFalse
.ConditionTrue:
 set temp=1 (true)
 jmp .CheckCondition //jump to check condition
.ConditionFalse:
 set temp = 0 (false)
.CheckCondition:
 check if temp is 1 (true) or 0 (false)
 if temp is 0 (false) jump to .FalseCase
.TrueCase:
 // code for true case
 jmp .EndIf // skip else case
.FalseCase:
 // code for else case
.EndIf: // continuation after if

Code generation template for
if then else (conditional branch)
Stores condition explicitly, may
be more debuggable

Generate code for procedure body
Control Flow via comparisons and jumps
 //if (temp3 < temp4)
 mov -48(%rbp), %rax
 cmp %rax, -40(%rbp)
 jge .BasicBlock8
.BasicBlock7:
 movq $1, -32(%rbp) //temp2 = true
 jmp .BasicBlock9 //jump to condition
.BasicBlock8:
 movq $0, -32(%rbp) //temp2 = false
.BasicBlock9:
 cmp $1, -32(%rbp) //if temp2 is true fall through, if false jump to false case
 jne .BasicBlock11
.BasicBlock10:
 // code for true (then) case
 jmp .BasicBlock12 // skip else case
.BasicBlock11:
 // code for false (else) case
.BasicBlock12: // continuation after if

%rax as working register
Apply code generation template

Code For Conditional Branch in
CFG

•  Each basic block has a label
•  Each conditional branch in CFG has

– True edge (goes to basic block with label LT)
– False edge (goes to basic block with label LF)

•  Emitted code for CFG tests condition
–  If true, jump to LT
–  If false, jump to LF

•  Emit all basic blocks (in some order), jumps
link everything together

Quick Peephole Optimization

•  Emitted code can look something like:
 jmp .BasicBlock0
.BasicBlock0:

•  In this case can remove jmp instruction

Guidelines for the code generator

•  Lower the abstraction level slowly
– Do many passes, that do few things (or one thing)
– Easier to break the project down, generate and debug

•  Keep the abstraction level consistent
–  IR should have ‘correct’ semantics at all time
– At least you should know the semantics
– You may want to run some of the optimizations

between the passes.
•  Write sanity checks, consistency checks, use often

Guidelines for the code generator
•  Do the simplest but dumb thing

–  it is ok to generate 0 + 1*x + 0*y
– Code is painful to look at; let optimizations improve it

•  Make sure you know want can be done at…
– Compile time in the compiler
– Runtime using generated code

Guidelines for the code generator
•  Remember that optimizations will come later

– Let the optimizer do the optimizations
– Think about what optimizer will need and structure your

code accordingly
– Example: Register allocation, algebraic simplification,

constant propagation
•  Setup a good testing infrastructure

–  regression tests
•  If a input program creates a bug, use it as a regression test

– Learn good bug hunting procedures
•  Example: binary search , delta debugging

Machine Code Generator
Should...

•  Translate all the instructions in the
intermediate representation to assembly
language

•  Allocate space for the variables, arrays etc.
•  Adhere to calling conventions
•  Create the necessary symbolic information

Machines understand...
LOCATION DATA

 0046 8B45FC
 0049 4863F0
 004c 8B45FC
 004f 4863D0
 0052 8B45FC
 0055 4898
 0057 8B048500
 000000
 005e 8B149500
 000000
 0065 01C2
 0067 8B45FC
 006a 4898
 006c 89D7
 006e 033C8500
 000000
 0075 8B45FC
 0078 4863C8
 007b 8B45F8
 007e 4898
 0080 8B148500

Machines understand...
LOCATION DATA ASSEMBLY INSTRUCTION

 0046 8B45FC movl -4(%rbp), %eax
 0049 4863F0 movslq %eax,%rsi
 004c 8B45FC movl -4(%rbp), %eax
 004f 4863D0 movslq %eax,%rdx
 0052 8B45FC movl -4(%rbp), %eax
 0055 4898 cltq
 0057 8B048500 movl B(,%rax,4), %eax
 000000
 005e 8B149500 movl A(,%rdx,4), %edx
 000000
 0065 01C2 addl %eax, %edx
 0067 8B45FC movl -4(%rbp), %eax
 006a 4898 cltq
 006c 89D7 movl %edx, %edi
 006e 033C8500 addl C(,%rax,4), %edi
 000000
 0075 8B45FC movl -4(%rbp), %eax
 0078 4863C8 movslq %eax,%rcx
 007b 8B45F8 movl -8(%rbp), %eax
 007e 4898 cltq
 0080 8B148500 movl B(,%rax,4), %edx

Assembly language
•  Advantages

–  Simplifies code generation due to use of symbolic
instructions and symbolic names

– Logical abstraction layer
– Multiple Architectures can describe by a single

assembly language
⇒ can modify the implementation

•  macro assembly instructions

•  Disadvantages
– Additional process of assembling and linking
– Assembler adds overhead

Assembly language
•  Relocatable machine language (object modules)

–  all locations(addresses) represented by symbols
–  Mapped to memory addresses at link and load time
–  Flexibility of separate compilation

•  Absolute machine language
–  addresses are hard-coded
–  simple and straightforward implementation
–  inflexible -- hard to reload generated code
–  Used in interrupt handlers and device drivers

Concept of An Object File
•  The object file has:

–  Multiple Segments
–  Symbol Information
–  Relocation Information

•  Segments
–  Global Offset Table
–  Procedure Linkage Table
–  Text (code)
–  Data
–  Read Only Data

•  To run program, OS reads object file, builds executable
process in memory, runs process

•  We will use assembler to generate object files

Overview of a modern ISA

•  Memory

•  Registers
•  ALU

•  Control

Memory

Registers ALU

Control

From IR to Assembly
•  Data Placement and Layout

– Global variables
– Constants (strings, numbers)
– Object fields
– Parameters, local variables
– Temporaries

•  Code
– Read and write data
– Compute
– Flow of control

Memory

Registers ALU

Control

Typical Memory Layout

Global Variables
Read-only constants

Program

Heap

Dynamic

Unmapped

Text

Stack

Data

0x40 0000

0x800 0000 0000

0x0

Local variables
Temporaries
Some parameters

Global Variables
C

 struct { int x, y; double z; } b;
 int g;
 int a[10];

Assembler directives (reserve space in data segment)
 .comm _a,40,4 ## @a

 .comm _b,16,3 ## @b
 .comm _g,4,2 ## @g

Name Size Alignment

Addresses

Reserve Memory
 .comm _a,40,4 ## @a
 .comm _b,16,3 ## @b
 .comm _g,4,2 ## @g

Define 3 constants
 _a – address of a in data segment
 _b – address of b in data segment
 _g – address of g in data segment

Struct and Array Layout

•  struct { int x, y; double z; } b;
– Bytes 0-1: x
– Bytes 2-3: y
– Bytes 4-7: z

•  int a[10]
– Bytes 0-1: a[0]
– Bytes 2-3: a[1]
– …
– Bytes 18-19: a[9]

Dynamic Memory Allocation

typedef struct { int x, y; } PointStruct, *Point;
Point p = malloc(sizeof(PointStruct));

What does allocator do?

 returns next free big enough data block in heap
 appropriately adjusts heap data structures

Some Heap Data Structures
•  Free List (arrows are addresses)

•  Powers of Two Lists

Getting More Heap Memory

Dynamic

Unmapped

Text

Stack

Data

Heap

0x800 0000 0000

Scenario: Current heap goes from 0x800 0000 000- 0x810 0000 0000
 Need to allocate large block of memory
 No block that large available

0x810 0000 0000

Getting More Heap Memory

Dynamic

Unmapped

Text

Stack

Data

Heap

0x800 0000 0000

Solution: Talk to OS, increase size of heap (sbrk)
 Allocate block in new heap

0x820 0000 0000

0x810 0000 0000

The Stack
•  Arguments 0 to 6

are in:
–  %rdi, %rsi, %rdx,
–  %rcx, %r8 and %r9

%rbp
–  marks the beginning

of the current frame

%rsp
–  marks the end

%rax
–  return value

0(%rsp)

Return address

argument n
…

argument 7

local 0
…

local m

Previous %rbp

Variable size

0(%rbp)

-8(%rbp)

-8*m-8(%rbp)

8(%rbp)

16(%rbp)

8*n+16(%rbp)

P
re

vi
ou

s
C

ur
re

nt

Question:

•  Why use a stack? Why not use the heap or pre-
allocated in the data segment?

Procedure Linkages

Standard procedure linkage
procedure p

prolog

epilog

pre-call

post-return

procedure q

prolog

epilog

Pre-call:

• Save caller-saved registers

• Push arguments

Prolog:

• Push old frame pointer

• Save callee-saved registers

• Make room for temporaries

Epilog:

• Restore callee-saved

• Pop old frame pointer

• Store return value

Post-return:

• Restore caller-saved

• Pop arguments

Stack
•  Calling: Caller

–  Assume %rcx is live and
is caller save

–  Call foo(A, B, C, D, E, F, G, H, I)
•  A to I are at -8(%rbp) to -72(%rbp)

 push %rcx

 push -72(%rbp)

 push -64(%rbp)

 push -56(%rbp)

 mov -48(%rbp), %r9

 mov -40(%rbp), %r8

 mov -32(%rbp), %rcx

 mov -24(%rbp), %rdx

 mov -16(%rbp), %rsi

 mov -8(%rbp), %rdi

 call foo

previous frame pointer
return address

local variables

callee saved
registers

stack temporaries

dynamic area

caller saved registers
argument 9
argument 8
argument 7

return address

rsp

rbp

Stack
•  Calling: Callee

–  Assume %rbx is used in the function
and is callee save

–  Assume 40 bytes are required for locals

 foo:

 push %rbp

 mov %rsp, %rbp

 sub $48, %rsp

 mov %rbx, -8(%rbp)

previous frame pointer
return address

local variables

calliee saved
registers

stack temporaries

dynamic area

caller saved registers
argument 9
argument 8
argument 7

previous frame pointer
return address

dynamic area

rsp

calliee saved
registers

local variables

stack temporaries

rbp

enter $48, $0

Stack
•  Arguments
•  Call foo(A, B, C, D, E, F, G, H, I)

–  Passed in by pushing before the call

 push -72(%rbp)

 push -64(%rbp)

 push -56(%rbp)

 mov -48(%rbp), %r9

 mov -40(%rbp), %r8

 mov -32(%rbp), %rcx

 mov -24(%rbp), %rdx

 mov -16(%rbp), %rsi

 mov -8(%rbp), %rdi

 call foo

–  Access A to F via registers
•  or put them in local memory

–  Access rest using 16+xx(%rbp)

 mov 16(%rbp), %rax

 mov 24(%rbp), %r10

previous frame pointer
return address

local variables

calliee saved
registers

stack temporaries

dynamic area

caller saved registers
argument 9
argument 8
argument 7

previous frame pointer
return address

dynamic area
rsp

calliee saved
registers

local variables

stack temporaries

rbp

Stack

•  Locals and Temporaries
–  Calculate the size and

allocate space on the stack
 sub $48, %rsp

 or enter $48, 0

–  Access using -8-xx(%rbp)

 mov -28(%rbp), %r10

 mov %r11, -20(%rbp)

previous frame pointer
return address

local variables

calliee saved
registers

stack temporaries

dynamic area

caller saved registers
argument 9
argument 8
argument 7

previous frame pointer
return address

dynamic area
rsp

calliee saved
registers

local variables

stack temporaries

rbp

Stack
•  Returning Callee

–  Assume the return value is the first temporary

–  Restore the caller saved register
–  Put the return value in %rax
–  Tear-down the call stack

 mov -8(%rbp), %rbx

 mov -16(%rbp), %rax

 mov %rbp, %rsp

 pop %rbp

 ret

previous frame pointer
return address

local variables

callee saved
registers

stack temporaries

dynamic area

caller saved registers
argument 9
argument 8
argument 7

previous frame pointer
return address

rsp
dynamic area

callee saved
registers

local variables

stack temporaries

rbp

leave

Stack
•  Returning Caller
•  Assume the return value goes to the first

temporary
–  Restore the stack to reclaim the

argument space
–  Restore the caller save registers
–  Save the return value

 call foo

 add $24, %rsp

 pop %rcx

 mov %rax, 8(%rbp)

 …

previous frame pointer
return address

local variables

callee saved
registers

stack temporaries

dynamic area

caller saved registers
argument 9
argument 8
argument 7 rsp

rbp

Question:

•  Do you need the $rbp?
•  What are the advantages and disadvantages of

having $rbp?

47

So far we covered..
CODE DATA

Procedures

Control Flow

Statements

Data Access

Global Static Variables

Global Dynamic Data

Local Variables

Temporaries

Parameter Passing

Read-only Data

Outline
•  Generation of expressions and statements
•  Generation of control flow
•  x86-64 Processor
•  Guidelines in writing a code generator

8

Expressions

•  Expressions are represented as trees
– Expression may produce a value
– Or, it may set the condition codes (boolean exprs)

•  How do you map expression trees to the machines?
–  How to arrange the evaluation order?
–  Where to keep the intermediate values?

•  Two approaches
–  Stack Model
–  Flat List Model

Evaluating expression trees

•  Stack model
– Eval left-sub-tree

Put the results on the stack
– Eval right-sub-tree

Put the results on the stack
– Get top two values from the stack

perform the operation OP
put the results on the stack

•  Very inefficient!

OP

Evaluating Expression Trees
•  Flat List Model

–  The idea is to linearize the expression tree
–  Left to Right Depth-First Traversal of the expression tree

•  Allocate temporaries for intermediates (all the nodes of the tree)
–  New temporary for each intermediate
–  All the temporaries on the stack (for now)

–  Each expression is a single 3-addr op
•  x = y op z
•  Code generation for the 3-addr expression

–  Load y into register %rax
–  Perform op z, %rax
–  Store %rax to x

Issues in Lowering Expressions
•  Map intermediates to registers?

–  registers are limited
•  when the tree is large, registers may be insufficient ⇒ allocate space

in the stack

•  No machine instruction is available
–  May need to expand the intermediate operation into multiple

machine ops.
•  Very inefficient

–  too many copies
–  don’t worry, we’ll take care of them in the optimization

passes
–  keep the code generator very simple

What about statements?

•  Assignment statements are simple
– Generate code for RHS expression
– Store the resulting value to the LHS address

•  But what about conditionals and loops?

Outline
•  Generation of statements
•  Generation of control flow
•  Guidelines in writing a code generator

28

Two Techniques

•  Template Matching
•  Short-circuit Conditionals

•  Both are based on structural induction
– Generate a representation for the sub-parts
– Combine them into a representation for the whole

Template for conditionals
if (test)
 true_body
else
 false_body

 <do the test>

 joper lab_true
 <false_body>
 jmp lab_end

lab_true:
 <true_body>

lab_end:

29

Example Program
 if(ax > bx)
 dx = ax - bx;
 else
 dx = bx - ax;

 <do test>

 joper .L0

 <FALSE BODY>

 jmp .L1

.L0:

 <TRUE BODY>

.L1:

previous frame pointer
Return address

Argument 9: cx (30)

rbp

rsp

Argument 8: bx (20)
Argument 7: ax (10)

Local variable dx (??)
Local variable dy (??)
Local variable dz (??)

previous frame pointer
Return address

Local variable px (10)
Local variable py (20)
Local variable pz (30)

Example Program
 if(ax > bx)
 dx = ax - bx;
 else
 dx = bx - ax;

 movq 16(%rbp), %r10
 movq 24(%rbp), %r11
 cmpq %r10, %r11
 jg .L0

 <FALSE BODY>

 jmp .L1

.L0:

 <TRUE BODY>

.L1:

previous frame pointer
Return address

Argument 9: cx (30)

rbp

rsp

Argument 8: bx (20)
Argument 7: ax (10)

Local variable dx (??)
Local variable dy (??)
Local variable dz (??)

previous frame pointer
Return address

Local variable px (10)
Local variable py (20)
Local variable pz (30)

Example Program
 if(ax > bx)
 dx = ax - bx;
 else
 dx = bx - ax;

 movq 16(%rbp), %r10
 movq 24(%rbp), %r11
 cmpq %r10, %r11
 jg .L0
 movq 24(%rbp), %r10
 movq 16(%rbp), %r11
 subq %r10, %r11
 movq %r11, -8(%rbp)
 jmp .L1
.L0:

 <TRUE BODY>

.L1:

previous frame pointer
Return address

Argument 9: cx (30)

rbp

rsp

Argument 8: bx (20)
Argument 7: ax (10)

Local variable dx (??)
Local variable dy (??)
Local variable dz (??)

previous frame pointer
Return address

Local variable px (10)
Local variable py (20)
Local variable pz (30)

Example Program
 if(ax > bx)
 dx = ax - bx;
 else
 dx = bx - ax;

 movq 16(%rbp), %r10
 movq 24(%rbp), %r11
 cmpq %r10, %r11
 jg .L0
 movq 24(%rbp), %r10
 movq 16(%rbp), %r11
 subq %r10, %r11
 movq %r11, -8(%rbp)
 jmp .L1
.L0:
 movq 16(%rbp), %r10
 movq 24(%rbp), %r11
 subq %r10, %r11
 movq %r11, -8(%rbp)
.L1:

previous frame pointer
Return address

Argument 9: cx (30)

rbp

rsp

Argument 8: bx (20)
Argument 7: ax (10)

Local variable dx (??)
Local variable dy (??)
Local variable dz (??)

previous frame pointer
Return address

Local variable px (10)
Local variable py (20)
Local variable pz (30)

Template for while loops
while (test)
 body

Template for while loops
while (test)
 body

lab_cont:
 <do the test>
 joper lab_body
 jmp lab_end

lab_body:
 <body>
 jmp lab_cont

lab_end:

Template for while loops
while (test)
 body

lab_cont:
 <do the test>
 joper lab_body
 jmp lab_end

lab_body:
 <body>
 jmp lab_cont

lab_end:

•  An optimized template

31

lab_cont:
 <do the test>
 joper lab_end
 <body>
 jmp lab_cont

lab_end:

CODE DATA

Procedures

Control Flow

Statements

Data Access

Global Static Variables
Global Dynamic Data

Local Variables

Parameter Passing
Read-only Data

Temporaries

Question:
•  What is the template for?

do
 body
while (test)

33

Question:
•  What is the template for?

do
 body
while (test)

 lab_begin:

 <body>
 <do test>
 joper lab_begin

33

Control Flow Graph (CFG)

•  Starting point: high level intermediate format,
symbol tables

•  Target: CFG
– CFG Nodes are Instruction Nodes
– CFG Edges Represent Flow of Control
– Forks At Conditional Jump Instructions
– Merges When Flow of Control Can Reach A Point

Multiple Ways
– Entry and Exit Nodes

if (x < y) {
 a = 0;

} else {
 a = 1;

}

entry

mov x, %r10 Mov y, %r11

<

jl xxx

mov $0, a mov $1, a

exit

Pattern for if then else

cmp %r10, %r11

Short-Circuit Conditionals
•  In program, conditionals have a condition

written as a boolean expression
((i < n) && (v[i] != 0)) || i > k)

•  Semantics say should execute only as much as
required to determine condition
– Evaluate (v[i] != 0) only if (i < n) is true
– Evaluate i > k only if ((i < n) && (v[i] != 0)) is

false
•  Use control-flow graph to represent this short-

circuit evaluation

Short-Circuit Conditionals
while (i < n && v[i] != 0) {

 i = i+1;
}

entry

exit

<

jl xxx

cmp %r10, %r11

mov %r11, i

<

jl yyy

cmp %r10, %r11

add $1, %r11

mov i, %r11

More Short-Circuit Conditionals
if (a < b || c != 0) {

 i = i+1;
}

entry

exit

<

jl xxx

cmp %r10, %r11

<

jne yyy

cmp %r10, %r11
mov %r11, i

add $1, %r11

mov i, %r11

Routines for Destructuring Program
Representation

destruct(n)
 generates lowered form of structured code represented by n
 returns (b,e) - b is begin node, e is end node in destructed form

shortcircuit(c, t, f)

 generates short-circuit form of conditional represented by c
 if c is true, control flows to t node
 if c is false, control flows to f node
 returns b - b is begin node for condition evaluation

new kind of node - nop node

Destructuring Seq Nodes
destruct(n)

 generates lowered form of structured code represented by n
 returns (b,e) - b is begin node, e is end node in destructed form
 if n is of the form seq x y

seq

x y

Destructuring Seq Nodes
destruct(n)

 generates lowered form of structured code represented by n
 returns (b,e) - b is begin node, e is end node in destructed form
 if n is of the form seq x y
 1: (bx,ex) = destruct(x);

seq

x y

bx

ex

Destructuring Seq Nodes
destruct(n)

 generates lowered form of structured code represented by n
 returns (b,e) - b is begin node, e is end node in destructed form
 if n is of the form seq x y
 1: (bx,ex) = destruct(x); 2: (by,ey) = destruct(y);

seq

x y

bx

ex by

ey

Destructuring Seq Nodes
destruct(n)

 generates lowered form of structured code represented by n
 returns (b,e) - b is begin node, e is end node in destructed form
 if n is of the form seq x y
 1: (bx,ex) = destruct(x); 2: (by,ey) = destruct(y);
 3: next(ex) = by;

seq

x y

bx

ex by

ey

Destructuring Seq Nodes
destruct(n)

 generates lowered form of structured code represented by n
 returns (b,e) - b is begin node, e is end node in destructed form
 if n is of the form seq x y
 1: (bx,ex) = destruct(x); 2: (by,ey) = destruct(y);
 3: next(ex) = by; 4: return (bx, ey);

seq

x y

bx

ex by

ey

Destructuring If Nodes
destruct(n)

 generates lowered form of structured code represented by n
 returns (b,e) - b is begin node, e is end node in destructed form
 if n is of the form if c x y

if
c y x

Destructuring If Nodes
destruct(n)

 generates lowered form of structured code represented by n
 returns (b,e) - b is begin node, e is end node in destructed form
 if n is of the form if c x y
 1: (bx,ex) = destruct(x);

if
c y

bx ex

x

Destructuring If Nodes
destruct(n)

 generates lowered form of structured code represented by n
 returns (b,e) - b is begin node, e is end node in destructed form
 if n is of the form if c x y
 1: (bx,ex) = destruct(x); 2: (by,ey) = destruct(y);

if
c y

bx ex

x by ey

Destructuring If Nodes
destruct(n)

 generates lowered form of structured code represented by n
 returns (b,e) - b is begin node, e is end node in destructed form
 if n is of the form if c x y
 1: (bx,ex) = destruct(x); 2: (by,ey) = destruct(y);
 3: e = new nop;

if
c y

bx ex

e

x by ey

Destructuring If Nodes
destruct(n)

 generates lowered form of structured code represented by n
 returns (b,e) - b is begin node, e is end node in destructed form
 if n is of the form if c x y
 1: (bx,ex) = destruct(x); 2: (by,ey) = destruct(y);
 3: e = new nop; 4: next(ex) = e; 5: next(ey) = e;

if
c y

bx ex

e

x by ey

Destructuring If Nodes
destruct(n)

 generates lowered form of structured code represented by n
 returns (b,e) - b is begin node, e is end node in destructed form
 if n is of the form if c x y
 1: (bx,ex) = destruct(x); 2: (by,ey) = destruct(y);
 3: e = new nop; 4: next(ex) = e; 5: next(ey) = e;
 6: bc = shortcircuit(c, bx, by);

if
c y

bc

bx ex

e

x by ey

Destructuring If Nodes
destruct(n)

 generates lowered form of structured code represented by n
 returns (b,e) - b is begin node, e is end node in destructed form
 if n is of the form if c x y
 1: (bx,ex) = destruct(x); 2: (by,ey) = destruct(y);
 3: e = new nop; 4: next(ex) = e; 5: next(ey) = e;
 6: bc = shortcircuit(c, bx, by); 7: return (bc, e);

if
c y

bc

bx ex

e

x by ey

Destructuring While Nodes
destruct(n)

 generates lowered form of structured code represented by n
 returns (b,e) - b is begin node, e is end node in destructed form
 if n is of the form while c x

while

c x

Destructuring While Nodes
destruct(n)

 generates lowered form of structured code represented by n
 returns (b,e) - b is begin node, e is end node in destructed form
 if n is of the form while c x
 1: e = new nop;

while

c x

e

Destructuring While Nodes
destruct(n)

 generates lowered form of structured code represented by n
 returns (b,e) - b is begin node, e is end node in destructed form
 if n is of the form while c x
 1: e = new nop; 2: (bx,ex) = destruct(x);

while

c x

e

bx

ex

Destructuring While Nodes
destruct(n)

 generates lowered form of structured code represented by n
 returns (b,e) - b is begin node, e is end node in destructed form
 if n is of the form while c x
 1: e = new nop; 2: (bx,ex) = destruct(x);
 3: bc = shortcircuit(c, bx, e);

while

c x

bc

e

bx

ex

Destructuring While Nodes
destruct(n)

 generates lowered form of structured code represented by n
 returns (b,e) - b is begin node, e is end node in destructed form
 if n is of the form while c x
 1: e = new nop; 2: (bx,ex) = destruct(x);
 3: bc = shortcircuit(c, bx, e); 4: next(ex) = bc;

while

c x

bc

e

bx

ex

Destructuring While Nodes
destruct(n)

 generates lowered form of structured code represented by n
 returns (b,e) - b is begin node, e is end node in destructed form
 if n is of the form while c x
 1: e = new nop; 2: (bx,ex) = destruct(x);
 3: bc = shortcircuit(c, bx, e); 4: next(ex) = bc; 5: return (bc, e);

while

c x

bc

e

bx

ex

Shortcircuiting And Conditions
shortcircuit(c, t, f)

 generates shortcircuit form of conditional represented by c
 returns b - b is begin node of shortcircuit form
 if c is of the form c1 && c2

c1 && c2

Shortcircuiting And Conditions
shortcircuit(c, t, f)

 generates shortcircuit form of conditional represented by c
 returns b - b is begin node of shortcircuit form
 if c is of the form c1 && c2

 1: b2 = shortcircuit(c2, t, f);

c1 && c2

f

b2

t

Shortcircuiting And Conditions
shortcircuit(c, t, f)

 generates shortcircuit form of conditional represented by c
 returns b - b is begin node of shortcircuit form
 if c is of the form c1 && c2

 1: b2 = shortcircuit(c2, t, f); 2: b1 = shortcircuit(c1, b2, f);

c1 && c2

b1

f

b2

t

Shortcircuiting And Conditions
shortcircuit(c, t, f)

 generates shortcircuit form of conditional represented by c
 returns b - b is begin node of shortcircuit form
 if c is of the form c1 && c2

 1: b2 = shortcircuit(c2, t, f); 2: b1 = shortcircuit(c1, b2, f);
 3: return (b1);

c1 && c2

b1

f

b2

t

Shortcircuiting Or Conditions
shortcircuit(c, t, f)

 generates shortcircuit form of conditional represented by c
 returns b - b is begin node of shortcircuit form
 if c is of the form c1 || c2

c1 || c2

Shortcircuiting Or Conditions
shortcircuit(c, t, f)

 generates shortcircuit form of conditional represented by c
 returns b - b is begin node of shortcircuit form
 if c is of the form c1 || c2

 1: b2 = shortcircuit(c2, t, f);

c1 || c2

f

b2 t

Shortcircuiting Or Conditions
shortcircuit(c, t, f)

 generates shortcircuit form of conditional represented by c
 returns b - b is begin node of shortcircuit form
 if c is of the form c1 || c2

 1: b2 = shortcircuit(c2, t, f); 2: b1 = shortcircuit(c1, t, b2);

c1 || c2

b1

f

b2 t

Shortcircuiting Or Conditions
shortcircuit(c, t, f)

 generates shortcircuit form of conditional represented by c
 returns b - b is begin node of shortcircuit form
 if c is of the form c1 || c2

 1: b2 = shortcircuit(c2, t, f); 2: b1 = shortcircuit(c1, t, b2);
 3: return (b1);

c1 || c2

b1

f

b2 t

Shortcircuiting Not Conditions
shortcircuit(c, t, f)

 generates shortcircuit form of conditional represented by c
 returns b - b is begin node of shortcircuit form
 if c is of the form ! c1

 1: b = shortcircuit(c1, f, t); return(b);

b

f t

! c1

Computed Conditions
shortcircuit(c, t, f)

 generates shortcircuit form of conditional represented by c
 returns b - b is begin node of shortcircuit form
 if c is of the form e1 < e2

 1: b = new cbr(e1 < e2, t, f); 2: return (b);

e1 < e2

e1 e2

cmp

 jl

t f

Nops In Destructured Representation

nop

while (i < n && v[i] != 0) {
 i = i+1;

}

entry

exit

<

jl xxx

cmp %r10, %r11

mov %r11, i

<

jl yyy

cmp %r10, %r11

add $1, %r11

mov i, %r11

Eliminating Nops Via Peephole
Optimization

nop

... ...

Linearizing CFG to Assembler

•  Generate labels for edge targets at branches
– Labels will correspond to branch targets
– Can use patterns for this

•  Generate code for statements/conditional
expressions

•  Generate code for procedure entry/exit

Exploring Assembly Patterns
struct { int x, y; double z; } b;
int g;
int a[10];
char *s = "Test String”;
int f(int p) {
 int i;
 int s;
 s = 0.0;
 for (i = 0; i < 10; i++) {
 s = s + a[i];
 }
 return s;
}

•  gcc –g –S t.c
•  vi t.s

Outline
•  Generation of statements
•  Generation of control flow
•  x86-64 Processor
•  Guidelines in writing a code generator

49

