Dataflow Analysis

- Compile-Time Reasoning About
- Run-Time Values of Variables or Expressions
- At Different Program Points
 - Which assignment statements produced value of variable at this point?
 - Which variables contain values that are no longer used after this program point?
 - What is the range of possible values of variable at this program point?

Program Representation

- Control Flow Graph
 - Nodes \(N \) – statements of program
 - Edges \(E \) – flow of control
 - \(\text{pred}(n) \) – set of all predecessors of \(n \)
 - \(\text{succ}(n) \) – set of all successors of \(n \)
 - Start node \(n_0 \)
 - Set of final nodes \(N_{\text{final}} \)

Program Points

- One program point before each node
- One program point after each node
- Join point – point with multiple predecessors
- Split point – point with multiple successors

Basic Idea

- Information about program represented using values from algebraic structure called lattice
- Analysis produces lattice value for each program point
- Two flavors of analysis
 - Forward dataflow analysis
 - Backward dataflow analysis

Forward Dataflow Analysis

- Analysis propagates values forward through control flow graph with flow of control
 - Each node has a transfer function \(f \)
 - Input – value at program point before node
 - Output – new value at program point after node
 - Values flow from program points after predecessor nodes to program points before successor nodes
 - At join points, values are combined using a merge function
- Canonical Example: Reaching Definitions
Backward Dataflow Analysis

- Analysis propagates values backward through control flow graph against flow of control
 - Each node has a transfer function \(f \)
 - Input – value at program point after node
 - Output – new value at program point before node
 - Values flow from program points before successor nodes to program points after predecessor nodes
 - At split points, values are combined using a merge function
 - Canonical Example: Live Variables

Partial Orders

- Set \(P \)
- Partial order \(\leq \) such that \(\forall x, y, z \in P \)
 - \(x \leq x \) (reflexive)
 - \(x \leq y \) and \(y \leq x \) implies \(x = y \) (symmetric)
 - \(x \leq y \) and \(y \leq z \) implies \(x \leq z \) (transitive)
- Can use partial order to define
 - Upper and lower bounds
 - Least upper bound
 - Greatest lower bound

Upper Bounds

- If \(S \subseteq P \) then
 - \(x \in P \) is an upper bound of \(S \) if \(\forall y \in S. \ y \leq x \)
 - \(x \in P \) is the least upper bound of \(S \) if
 - \(x \) is an upper bound of \(S \), and
 - \(x \leq y \) for all upper bounds \(y \) of \(S \)
 - \(\lor \) - join, least upper bound, lub, supremum, sup
 - \(\lor S \) is the least upper bound of \(S \)
 - \(x \lor y \) is the least upper bound of \(\{x, y\} \)

Lower Bounds

- If \(S \subseteq P \) then
 - \(x \in P \) is a lower bound of \(S \) if \(\forall y \in S. \ x \leq y \)
 - \(x \in P \) is the greatest lower bound of \(S \) if
 - \(x \) is a lower bound of \(S \), and
 - \(y \leq x \) for all lower bounds \(y \) of \(S \)
 - \(\land \) - meet, greatest lower bound, glb, infimum, inf
 - \(\land S \) is the greatest lower bound of \(S \)
 - \(x \land y \) is the greatest lower bound of \(\{x, y\} \)

Covering

- \(x < y \) if \(x \leq y \) and \(x \neq y \)
- \(x \) is covered by \(y \) (\(y \) covers \(x \)) if
 - \(x < y \), and
 - \(x \leq z < y \) implies \(x = z \)
- Conceptually, \(y \) covers \(x \) if there are no elements between \(x \) and \(y \)

Example

- \(P = \{000, 001, 010, 011, 100, 101, 110, 111\} \) (standard boolean lattice, also called hypercube)
- \(x \leq y \) if (\(x \) bitwise and \(y \)) = \(x \)

Hasse Diagram

- If \(y \) covers \(x \)
 - Line from \(y \) to \(x \)
 - \(y \) above \(x \) in diagram
Lattices

• If $x \land y$ and $x \lor y$ exist for all $x,y \in P$, then P is a lattice.
• If $\land S$ and $\lor S$ exist for all $S \subseteq P$, then P is a complete lattice.
• All finite lattices are complete

Top and Bottom

• Greatest element of P (if it exists) is top
• Least element of P (if it exists) is bottom (\perp)

Connection Between \leq, \land, and \lor

• The following 3 properties are equivalent:
 - $x \leq y$
 - $x \lor y = y$
 - $x \land y = x$
• Will prove:
 - $x \leq y$ implies $x \lor y = y$ and $x \land y = x$
 - $x \land y = x$ implies $x \leq y$
• Then by transitivity, can obtain
 - $x \lor y = y$ implies $x \land y = x$
 - $x \land y = x$ implies $x \lor y = y$

Connecting Lemma Proofs

• Proof of $x \leq y$ implies $x \lor y = y$
 - $x \leq y$ implies y is an upper bound of $\{x,y\}$.
 - Any upper bound z of $\{x,y\}$ must satisfy $y \leq z$.
 - So y is least upper bound of $\{x,y\}$ and $x \lor y = y$
• Proof of $x \leq y$ implies $x \land y = x$
 - $x \leq y$ implies x is a lower bound of $\{x,y\}$.
 - Any lower bound z of $\{x,y\}$ must satisfy $z \leq x$.
 - So x is greatest lower bound of $\{x,y\}$ and $x \land y = x$
Lattices as Algebraic Structures

• Have defined \(\lor \) and \(\land \) in terms of \(\leq \)
• Will now define \(\leq \) in terms of \(\lor \) and \(\land \)
 – Start with \(\lor \) and \(\land \) as arbitrary algebraic operations
 that satisfy associative, commutative, idempotence, and absorption laws
 – Will define \(\leq \) using \(\lor \) and \(\land \)
• Intuitive concept of \(\lor \) and \(\land \) as information combination operators (or, and)

Algebraic Properties of Lattices

Assume arbitrary operations \(\lor \) and \(\land \) such that

- \((x \lor y) \lor z = x \lor (y \lor z)\) (associativity of \(\lor \))
- \((x \land y) \land z = x \land (y \land z)\) (associativity of \(\land \))
- \(x \lor y = y \lor x\) (commutativity of \(\lor \))
- \(x \land y = y \land x\) (commutativity of \(\land \))
- \(x \lor x = x\) (idempotence of \(\lor \))
- \(x \land x = x\) (idempotence of \(\land \))
- \(x \lor (x \land y) = x\) (absorption of \(\lor \) over \(\land \))
- \(x \land (x \lor y) = x\) (absorption of \(\land \) over \(\lor \))

Connection Between \(\land \) and \(\lor \)

• \(x \lor y = y\) if and only if \(x \land y = x\)
• Proof of \(x \lor y = y\) implies \(x = x \land y\)
 \[x = x \land (x \lor y)\] (by absorption)
 \[= x \land y\] (by assumption)
• Proof of \(x \land y = x\) implies \(y = x \lor y\)
 \[y = y \lor (x \land y)\] (by absorption)
 \[= y \lor x\] (by commutativity)
 \[= y \lor y\] (by assumption)
 \[= x \lor y\] (by commutativity)

Properties of \(\leq \)

• Define \(x \leq y\) if \(x \lor y = y\)
• Proof of transitive property. Must show that
 \(x \lor y = y\) and \(y \lor z = z\) implies \(x \lor z = z\)
 \[x \lor z = x \lor (y \lor z)\] (by assumption)
 \[= (x \lor y) \lor z\] (by associativity)
 \[= y \lor z\] (by assumption)
 \[= z\] (by assumption)
• Proof of asymmetry property. Must show that
 \(x \lor y = y\) and \(y \lor x = x\) implies \(x = y\)
 \[x = y \lor x\] (by assumption)
 \[= x \lor y\] (by commutativity)
 \[= y\] (by assumption)
• Proof of reflexivity property. Must show that
 \(x \lor x = x\)
 \[x \lor x = x\] (by idempotence)
Proof of $x \lor y = \text{sup}\{x, y\}$

- Consider any upper bound u for x and y.
- Given $x \lor u = u$ and $y \lor u = u$, must show $x \lor y \leq u$, i.e., $(x \lor y) \lor u = u$

 \[
 u = x \lor u \quad \text{(by assumption)}
 \]
 \[
 = x \lor (y \lor u) \quad \text{(by assumption)}
 \]
 \[
 = (x \lor y) \lor u \quad \text{(by associativity)}
 \]

Proof of $x \land y = \text{inf}\{x, y\}$

- Consider any lower bound l for x and y.
- Given $x \land l = l$ and $y \land l = l$, must show $l \leq x \land y$, i.e., $(x \land y) \land l = l$

 \[
 l = x \land l \quad \text{(by assumption)}
 \]
 \[
 = x \land (y \land l) \quad \text{(by assumption)}
 \]
 \[
 = (x \land y) \land l \quad \text{(by associativity)}
 \]

Chains

- A set S is a chain if $\forall x, y \in S. y \leq x$ or $x \leq y$
- P has no infinite chains if every chain in P is finite
- P satisfies the ascending chain condition if for all sequences $x_1 \leq x_2 \leq \ldots$ there exists n such that $x_n = x_{n+1} = \ldots$

Application to Dataflow Analysis

- Dataflow information will be lattice values
 - Transfer functions operate on lattice values
 - Solution algorithm will generate increasing sequence of values at each program point
 - Ascending chain condition will ensure termination
- Will use \lor to combine values at control-flow join points

Transfer Functions

- Transfer function $f: P \to P$ for each node in control flow graph
- f models effect of the node on the program information

Each dataflow analysis problem has a set F of transfer functions $f: P \to P$
- Identity function $i \in F$
- F must be closed under composition: $\forall f, g \in F$, the function $h = \lambda x. f(g(x)) \in F$
- Each $f \in F$ must be monotone: $x \leq y$ implies $f(x) \leq f(y)$
- Sometimes all $f \in F$ are distributive: $f(x \lor y) = f(x) \lor f(y)$
- Distributivity implies monotonicity
Distributivity Implies Monotonicity

- Proof of distributivity implies monotonicity
- Assume \(f(x \vee y) = f(x) \vee f(y) \)
- Must show: \(x \vee y = y \) implies \(f(x) \vee f(y) = f(y) \)
 \[
 f(y) = f(x \vee y) \quad \text{(by assumption)}
 = f(x) \vee f(y) \quad \text{(by distributivity)}
 \]

Putting Pieces Together

- Forward Dataflow Analysis Framework
- Simulates execution of program forward with flow of control

Forward Dataflow Analysis

- Simulates execution of program forward with flow of control
- For each node \(n \), have
 - \(\text{in}_n \) – value at program point before \(n \)
 - \(\text{out}_n \) – value at program point after \(n \)
 - \(f_n \) – transfer function for \(n \) (given \(\text{in}_n \), computes \(\text{out}_n \))
- Require that solution satisfy
 - \(\forall n. \text{out}_n = f_n(\text{in}_n) \)
 - \(\forall n \neq n_0. \text{in}_n = \bigvee \{ \text{out}_m. m \in \text{pred}(n) \} \)
 - \(\text{in}_{n_0} = I \)
 - Where \(I \) summarizes information at start of program

Dataflow Equations

- Compiler processes program to obtain a set of dataflow equations
 \[
 \text{out}_n = f_n(\text{in}_n)
 \]
 \[
 \text{in}_n := \bigvee \{ \text{out}_m. m \in \text{pred}(n) \}
 \]
- Conceptually separates analysis problem from program

Worklist Algorithm for Solving Forward Dataflow Equations

for each \(n \) do
 \(\text{out}_n := f_n(\bot) \)
 \(\text{in}_{n_0} := I; \text{out}_{n_0} := f_n(I) \)
 worklist := \(N - \{ n_0 \} \)
while worklist \(\neq \emptyset \) do
 remove a node \(n \) from worklist
 \(\text{in}_n := \bigvee \{ \text{out}_m. m \in \text{pred}(n) \} \)
 \(\text{out}_n := f_n(\text{in}_n) \)
if \(\text{out}_n \) changed then
 worklist := worklist \(\cup \) succ(\(n \))

Correctness Argument

- Why result satisfies dataflow equations
- Whenever process a node \(n \), set \(\text{out}_n := f_n(\text{in}_n) \)
 Algorithm ensures that \(\text{out}_n = f_n(\text{in}_n) \)
- Whenever \(\text{out}_m \) changes, put succ(\(m \)) on worklist.
 Consider any node \(n \in \text{succ}(m) \). It will eventually come off worklist and algorithm will set
 \(\text{in}_n := \bigvee \{ \text{out}_m. m \in \text{pred}(n) \} \)
 to ensure that \(\text{in}_n = \bigvee \{ \text{out}_m. m \in \text{pred}(n) \} \)
- So final solution will satisfy dataflow equations
Termination Argument

- Why does algorithm terminate?
- Sequence of values taken on by in or out is a chain. If values stop increasing, worklist empties and algorithm terminates.
- If lattice has ascending chain property, algorithm terminates
 - Algorithm terminates for finite lattices
 - For lattices without ascending chain property, use widening operator

Widening Operators

- Detect lattice values that may be part of infinitely ascending chain
- Artificially raise value to least upper bound of chain
- Example:
 - Lattice is set of all subsets of integers
 - Could be used to collect possible values taken on by variable during execution of program
 - Widening operator might raise all sets of size n or greater to TOP (likely to be useful for loops)

Reaching Definitions

- \(P = \text{powerset of set of all definitions in program} \) (all subsets of set of definitions in program)
- \(v = \cup \) (order is \(\subseteq \))
- \(\bot = \emptyset \)
- \(I = \text{in}_{i0} = \bot \)
- \(F = \text{all functions } f \) of the form \(f(x) = a \cup (x-b) \)
 - \(b \) is set of definitions that node kills
 - \(a \) is set of definitions that node generates
- General pattern for many transfer functions
 - \(f(x) = \text{GEN} \cup (x-KILL) \)

Does Reaching Definitions Framework Satisfy Properties?

- \(\subseteq \) satisfies conditions for \(\leq \)
 - \(x \subseteq y \) and \(y \subseteq z \) implies \(x \subseteq z \) (transitivity)
 - \(x \subseteq y \) and \(y \subseteq x \) implies \(y = x \) (asymmetry)
 - \(x \subseteq x \) (idempotence)
- \(F \) satisfies transfer function conditions
 - \(\lambda x.\emptyset \cup (x-\emptyset) = \lambda x.x \in F \) (identity)
 - \(\lambda x.\emptyset \cup (x-\emptyset) \cup (y-\emptyset) = \lambda x.\emptyset \cup (x \cup (y \cup \emptyset)) \) (distributivity)
 - \(\lambda x.\emptyset \cup (x-\emptyset) \cup (y-\emptyset) = \lambda x.\emptyset \cup (x \cup (y \cup \emptyset)) \) (composition)
- General Result
 - All GEN/KILL transfer function frameworks satisfy
 - Identity
 - Distributivity
 - Composition
 - Properties
Available Expressions

- P = powerset of set of all expressions in program (all subsets of set of expressions)
- $v = \cap$ (order is \subseteq
- $\bot = P$
- $I = in_{in} = \emptyset$
- F = all functions f of the form $f(x) = a \cup (x-b)$
 - b is set of expressions that node kills
 - a is set of expressions that node generates
- Another GEN/KILL analysis

Concept of Conservatism

- Reaching definitions use \cup as join
 - Optimizations must take into account all definitions that reach along ANY path
- Available expressions use \cap as join
 - Optimization requires expression to reach along ALL paths
- Optimizations must conservatively take all possible executions into account. Structure of analysis varies according to way analysis used.

Backward Dataflow Analysis

- Simulates execution of program backward against the flow of control
- For each node n, have
 - in_{n} – value at program point before n
 - out_{n} – value at program point after n
 - f_{n} – transfer function for n (given out_{n}, computes in_{n})
- Require that solution satisfies
 - $\forall n. in_{n} = f_{n}(out_{n})$
 - $\forall n \notin N_{final}. out_{n} = \bigvee \{ in_{m} \cdot m \in succ(n) \}$
 - $\forall n \in N_{final} = out_{n} = O$
 - Where O summarizes information at end of program

Worklist Algorithm for Solving Backward Dataflow Equations

for each n do $in_{n} := f_{n}(\bot)$
for each $n \in N_{final}$ do $out_{n} := O; in_{n} := f_{n}(O)$
worklist := $N - N_{final}$
while worklist $\neq \emptyset$ do
 remove a node n from worklist
 $out_{n} := \bigvee \{ in_{m} \cdot m \in succ(n) \}$
 $in_{n} := f_{n}(out_{n})$
 if in_{n} changed then
 worklist := worklist \cup pred(n)

Live Variables

- P = powerset of set of all variables in program (all subsets of set of variables in program)
- $v = \cup$ (order is \subseteq
- $\bot = \emptyset$
- $O = \emptyset$
- F = all functions f of the form $f(x) = a \cup (x-b)$
 - b is set of variables that node kills
 - a is set of variables that node reads

Meaning of Dataflow Results

- Concept of program state s for control-flow graphs
 - Program point n where execution located (n is node that will execute next)
 - Values of variables in program
 - Each execution generates a trajectory of states:
 - $s_0; s_1; \ldots; s_k$ where each $s_i \in ST$
 - s_{k+1} generated from s_k by executing basic block to
 - Update variable values
 - Obtain new program point n
Relating States to Analysis Result

- Meaning of analysis results is given by an abstraction function $AF: ST \rightarrow P$
- Correctness condition: require that for all states s
 $$AF(s) \leq in_n$$
 where n is the next statement to execute in state s

Sign Analysis Example

- Sign analysis - compute sign of each variable v
- Base Lattice: $P =$ flat lattice on $\{-,0,+\}$
- Actual lattice records a value for each variable
 - Example element: $[a \rightarrow +, b \rightarrow 0, c \rightarrow \text{TOP}]$

Interpretation of Lattice Values

- If value of v in lattice is:
 - BOT: no information about sign of v
 - $-$: variable v is negative
 - 0: variable v is 0
 - $+$: variable v is positive
 - TOP: v may be positive or negative
- What is abstraction function AF?
 - $AF([x_1, ..., x_n]) = [\text{sign}(x_1), ..., \text{sign}(x_n)]$
 - Where $\text{sign}(x) = 0$ if $x = 0$, $+$ if $x > 0$, $-$ if $x < 0$

Operation \otimes on Lattice

<table>
<thead>
<tr>
<th>\otimes</th>
<th>BOT</th>
<th>-</th>
<th>0</th>
<th>+</th>
<th>TOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOT</td>
<td>BOT</td>
<td>-</td>
<td>0</td>
<td>+</td>
<td>TOP</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>+</td>
<td>0</td>
<td>-</td>
<td>TOP</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>-</td>
<td>0</td>
<td>+</td>
<td>TOP</td>
</tr>
<tr>
<td>TOP</td>
<td>TOP</td>
<td>TOP</td>
<td>0</td>
<td>TOP</td>
<td>TOP</td>
</tr>
</tbody>
</table>

Transfer Functions

- If n of the form $v = c$
 - $f_n(x) = x[v\rightarrow+]$ if c is positive
 - $f_n(x) = x[v\rightarrow0]$ if c is 0
 - $f_n(x) = x[v\rightarrow-]$ if c is negative
- If n of the form $v_1 = v_2 \otimes v_3$
 - $f_n(x) = x[v_1 \rightarrow x[v_2] \otimes x[v_3]]$
- $I = \text{TOP}$
 (uninitialized variables may have any sign)

Example

- $a = 1$
- $b = -1$
- $c = a \times b$
- $[a \rightarrow i, b \rightarrow \text{TOP}, c \rightarrow \text{TOP}]$
Imprecision In Example

Abstraction Imprecision:
- \([a\rightarrow 1]\) abstracted as \([a\rightarrow \top]\)
- \([a\rightarrow \top]\)

\(a = 1\)

\(b = -1\)

\(b = 1\)

\([a\rightarrow \top, b\rightarrow \top]\)

\(c = a \times b\)

Control Flow Imprecision:
- \([b\rightarrow \top]\) summarizes results of all executions. In any execution state \(s\), \(AF(s)[b]\) = \(\top\)

General Sources of Imprecision

- **Abstraction Imprecision**
 - Concrete values (integers) abstracted as lattice values (-, 0, and +)
 - Lattice values less precise than execution values
 - Abstraction function throws away information

- **Control Flow Imprecision**
 - One lattice value for all possible control flow paths
 - Analysis result has a single lattice value to summarize results of multiple concrete executions
 - Join operation \(\lor\) moves up in lattice to combine values from different execution paths
 - Typically if \(x \leq y\), then \(x\) is more precise than \(y\)

Why Have Imprecision

- Make analysis tractable
- Unbounded sets of values in execution
 - Typically abstracted by finite set of lattice values
- Execution may visit unbounded set of states
 - Abstracted by computing joins of different paths

Abstraction Function

- \(AF(s)[v] = \text{sign of } v\)
- \(AF(n, [a\rightarrow 5, b\rightarrow 0, c\rightarrow -2]) = [a\rightarrow \top, b\rightarrow 0, c\rightarrow \top]\)
- Establishes meaning of the analysis results
 - If analysis says variable has a given sign
 - Always has that sign in actual execution
- Correctness condition:
 - \(\forall v. AF(s)[v] \leq in_n[v]\) (\(n\) is node for \(s\))
 - Reflects possibility of imprecision

Abstraction Function Soundness

- Will show \(\forall v. AF(s)[v] \leq in_n[v]\) (\(n\) is node for \(s\)) by induction on length of computation that produced \(s\)

- **Base case:**
 - \(\forall v. in_{n_0}[v] = \top\), which implies that
 - \(\forall v. AF(s)[v] \leq \top\)

- **Induction Step**
 - Assume \(\forall v. AF(s)[v] \leq in_n[v]\) for computations of length \(k\)
 - Prove for computations of length \(k+1\)

 Proof:
 - Given \(s\) (state), \(n\) (node to execute next), and \(in_n\)
 - Find \(p\) (the node that just executed), \(s_p\) (the previous state), and \(in_p\)
 - By induction hypothesis \(\forall v. AF(s_p)[v] \leq in_p[v]\)
 - Case analysis on form of \(n\)
 - If \(n\) of the form \(v = c\), then
 - \(s[v] = \top\) and \(out_p[v] = \text{sign}(c)\), so
 - \(AF(s)[v] = \text{sign}(c)\) \(\leq in_n[v]\)
 - If \(n = v_1 \times v_2\): \(s[v] = \top\) and \(out_p[v] = in_p[v]\), so
 - \(AF(s)[v] \leq AF(s)[v_1] \times AF(s)[v_2] \leq in_n[v] \times in_n[v]\)
 - Similar reasoning if \(n\) of the form \(v_1 = v_2^*v_3\)
Augmented Execution States

- Abstraction functions for some analyses require augmented execution states
 - Reaching definitions: states are augmented with definition that created each value
 - Available expressions: states are augmented with expression for each value

Meet Over Paths Solution

- What solution would be ideal for a forward dataflow analysis problem?
- Consider a path $p = n_0, n_1, ..., n_k, n$ to a node n (note that for all i, $n_i \in \text{pred}(n_{i+1})$)
- The solution must take this path into account:
 $$f_p(\bot) = f(n_k)(f(n_{k-1})(...f(n_1)(f(n_0)(\bot))...)) \leq \text{in}_n$$
- So the solution must have the property that
 $$\bigvee \{f_p(\bot) : p \text{ is a path to } n\} \leq \text{in}_n$$
 and ideally
 $$\bigvee \{f_p(\bot) : p \text{ is a path to } n\} = \text{in}_n$$

Soundness Proof of Analysis Algorithm

- Property to prove:
 For all paths p to n, $f_p(\bot) \leq \text{in}_n$
- Proof is by induction on length of p
 - Uses monotonicity of transfer functions
 - Uses following lemma

 Lemma:
 Worklist algorithm produces a solution such that
 $$f_n(\text{in}_n) = \text{out}_n$$
 if $n \in \text{pred}(m)$ then $\text{out}_n \leq \text{in}_m$

Proof

- Base case: p is of length 1
 - Then $p = n_i$ and $f_n(\bot) = \bot = \text{in}_{n_0}$
- Induction step:
 - Assume theorem for all paths of length k
 - Show for an arbitrary path p of length $k+1$

 Induction Step Proof

- $p = n_0, ..., n_k, n$
- Must show $f_p(f_{n_k}(...f_{n_1}(f_{n_0}(\bot))...)) \leq \text{in}_n$
 - By induction ($f_{n_i}(...f_{n_1}(f_{n_0}(\bot))...)) \leq \text{in}_{n_k}$
 - Apply f_n to both sides, by monotonicity we get
 $$f_n(f_{n_k}(...f_{n_1}(f_{n_0}(\bot))...)) \leq f_n(\text{in}_{n_k})$$
 - By lemma, $f_n(\text{in}_{n_k}) = \text{out}_{n_k}$
 - By lemma, $\text{out}_{n_k} \leq \text{in}_n$
 - By transitivity, $f_p(f_{n_k}(...f_{n_1}(f_{n_0}(\bot))...)) \leq \text{in}_n$

Distributivity

- Distributivity preserves precision
- If framework is distributive, then worklist algorithm produces the meet over paths solution
 - For all n:
 $$\bigvee \{f_p(\bot) : p \text{ is a path to } n\} = \text{in}_n$$
Lack of Distributivity Example

- Constant Calculator
- Flat Lattice on Integers

Actual lattice records a value for each variable
- Example element: \([a \rightarrow 3, b \rightarrow 2, c \rightarrow 5]\)

Lack of Distributivity Anomaly

- If \(n\) of the form \(v = c\)
 - \(f(x) = x[v \rightarrow c]\)
- If \(n\) of the form \(v_1 = v_2 + v_3\)
 - \(f(x) = x[v_1 \rightarrow x[v_2] + x[v_3]]\)

Transfer Functions

- If \(n\) of the form \(v = c\)
 - \(f(x) = x[v \rightarrow c]\)
- If \(n\) of the form \(v_1 = v_2 + v_3\)
 - \(f(x) = x[v_1 \rightarrow x[v_2] + x[v_3]]\)

Lack of Distributivity
 - Consider transfer function \(f\) for \(c = a + b\)
 - \(f([a \rightarrow 3, b \rightarrow 2]) \lor f([a \rightarrow 2, b \rightarrow 3]) = [a \rightarrow \text{TOP}, b \rightarrow \text{TOP}, c \rightarrow 5]\)

How to Make Analysis Distributive

- Keep combinations of values on different paths

Issues

- Basically simulating all combinations of values in all executions
 - Exponential blowup
 - Nontermination because of infinite ascending chains
- Nontermination solution
 - Use widening operator to eliminate blowup (can make it work at granularity of variables)
 - Loses precision in many cases

Multiple Fixed Points

- Dataflow analysis generates least fixed point
- May be multiple fixed points
- Available expressions example
Summary

• Formal dataflow analysis framework
 – Lattices, partial orders
 – Transfer functions, joins and splits
 – Dataflow equations and fixed point solutions
• Connection with program
 – Abstraction function AF: S → P
 – For any state s and program point n, AF(s) ≤ in_n
 – Meet over all paths solutions, distributivity